Quantum Computing

Contents

1. Introduction
2. Physics and Computation
3. Beam-splitter optics experiment
4. Classical Vs Quantum probabilities
5. Some properties of quantum systems
6. Qubits
7. Classical Vs Quantum bits
8. Quantum circuits
9. Quantum gates
10. Quantum parallelisno
11. Quantum Computer
12. Quantum Algopithm
13. Quantum intormation security
14. Quantum implementation problems

Introduction

Computer technolog $\mathscr{\varphi}$ is making devices smaller akd smaller...
...reaching a point where classical
physics is no longer a suitable model for the laws of physics.

Physics and Computation

- Information is stored in a physical medium, and manipulated by physical processes.
- The laws of physicssfictate the capabilities of any information processing device.
- Designs of "classical" computers are implicitly based in the crassical framework for physics
- Classical physics is known to be incomplete... and hasibeen replaced by a more powerful frameŵork: quantum mechanics.

The nineteenth century was known as the machine age, the twentieth century will go down in history as the information age. I believe the twentyfirst century will be the quantum age. Paul Davies, Professor Natural Philosophy - Australian Centre for Astrobiology

The design of devices on such a small scale will require engineers to control quantum mechanical effects.

Allowing computers tofake advantage of quantum mechanicap ${ }^{3}$ behaviour allows us to do more than just increasingly many microscopic components onto a silicon chip...
... it gives us a whole new framework in which information can be processed in fundamentally new ways.

A simple experiment in optics

...consider a setup involving a photon source, a half-silvered mirror (beamsplitter), and a pair of photon detectors.

Now consider what happens when we fire a single photon into the device...

Simplestexplanation: beam-splitter acts as a classsical coin-flip, randomly sending eachsphoton one way or the other.

The "weirdness" of quantum mechanics...

... consider a modification of the experiment...
The simplest explanation for the modified setup would still predict a 50-50 distribution...

Thesimplest explanation is wrong!

Classical probabilities...

Consider a computation tree for a simple two-step (classical) probabilistic algorithm, which makes a coin-flip at each step, and whose output is 0 or 1 :

The probability of the computation following a giverpath is obtained by multiplying the probsêbilities along all branches of that pand... in the example the probability the Qomputation follows the red path is

$$
\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4}
$$

The probability of the computation giving the answer 0 is obtained by adding the probabilities of all paths resulting in 0 :

$$
\frac{1}{4}+\frac{1}{4}=\frac{1}{2}
$$

In quantum physics, we have probability amplitudes, which can have complex phase factors associated with them.

The probability amplitude associated with a path in the computation tree is obtained by multiplying the probaldedity amplitudes on that path. In the exampler the red path has amplitude $1 / 2$, and the green>oth has amplitude $-1 / 2$.
Theprobability amplitude for getting the answer $|0\rangle$ iscobtained by adding the probability amplitudes... the phase factors can lead to cancellations! The probability of obtaining $|0\rangle$ is obtained by squaring the total probability amplitude. In the example the probability of getting $|0\rangle$ is

$$
\left(\frac{1}{2}-\frac{1}{2}\right)=0
$$

Explanation of experiment

... consider a modification of the experiment...
The simplest explanation for the modified setup would still predict a 50-50 distribution...

Quantum mechanics and information

Any physical medium capable of representing 0 and 1 is in principle capable of storing any linear combination $\alpha_{0}|0\rangle+\alpha_{1}|1\rangle$
What does $\left.\alpha_{0}|0\rangle+\alpha_{\nu}+\frac{1}{t}\right\rangle$ really mean??
It's a "mystery", बेंHE mystery. We don't understand it, (Feynman)

Uncertainty

quantum world is irreducibly small so it's impossible to measure a quantum system without having an effect on that system as our measurement device is also quantum mechanical.

There is a trade off - the properties occur in complementary pairs (like position arnd momentum, or vertical spin and horizontal spin)

Entanglement

Two classical bits can be 00 or 01 or 10 or 11 . We can ask the value of the first bit without affecting the second bit.

Two qubits could be in the state

$$
1 \text { / } 2 \text { (|01> + |10첫 }
$$

The first qubit is neither $\mid 0>$ nors $\mid \gg$.
It's not even a superposition of $\mid 0>$ and $\mid 1>$ because the state is not separable: the value of the first qubit is entangled with the value of the second
We can't discover vabue of first qubit without affecting the second. Say we measure if and get 0 ; that means the state of the system is now 01> and therefore the second qubit is now |1>. But it waserit |1> before; it was entangled with the first qubit.

Superposition

Superposition means a system can be in two or more of its states simultaneously. For example a single particle can be traveling along two different paths at once. This implies that the particle hasiwave-like properties, which can mean that the wavesidfom the different paths can interfere with each otherr.

A superposition is not necessarily entangled. Consider

$$
1 / 2(|10>+| 11>) .
$$

We can measure the first qubit without affecting the second.
The ability forsthe particle to be in a superposition is where we get the parale nature of quantum computing

Qubit

$$
\begin{array}{cc}
|0\rangle \text { corresponds to } & \binom{1}{0} \\
|1\rangle \text { corresponds to } & \binom{0}{1} \\
\alpha_{0}|0\rangle+\alpha_{1}|1\rangle \text { corresponds to } & \alpha_{0}\binom{1}{0}+\alpha_{1}\binom{0}{1}=\binom{\alpha_{0}}{\alpha_{1}}
\end{array}
$$

State of a single qubit on the Bloch sphere

More than one qubit

If we concatenate two qubits

$$
\left(\alpha_{0}|0\rangle+\alpha_{1}|1\rangle\right)\left(\beta_{0}|0\rangle+\beta_{1}|1\rangle\right)
$$

we have a 2-qubit system with 4 basis states $|0\rangle 0\rangle=|00\rangle \quad|0\rangle|1\rangle=|Q 1\langle \rangle \quad| 1\rangle|0\rangle=|10\rangle \quad|1\rangle|1\rangle=|11\rangle$ and we can also describe the state as $\left.\alpha_{0} \beta_{0}|00\rangle+\alpha_{0} \beta_{1}\left|01 \times 2 \alpha_{1} \beta_{0}\right| 10\right\rangle+\alpha_{1} \beta_{1}|11\rangle$

Generalization to n qubits

The general state of n qubits is

$$
\sum_{x \in\{0,1\}^{n}} \alpha_{x}|x\rangle
$$

where the α_{x} are complex nunibers satisfying the normalization constraint

$$
\sum_{0}^{0}\left|\alpha_{x}\right|^{2}=1
$$

In general we can have arbitrary superpositions

$$
\begin{aligned}
& \alpha_{00}|0\rangle|0\rangle+\alpha_{01}^{2}|0\rangle|1\rangle+\alpha_{10}|1\rangle|0\rangle+\alpha_{11}|1\rangle|1\rangle \\
& \left|\alpha_{00}\right|^{2}+\left|\alpha_{01}^{2}\right|^{2}+\left|\alpha_{10}\right|^{2}+\left|\alpha_{11}\right|^{2}=1
\end{aligned}
$$

Classical vs. Quantum

Classical bits:

- can be measured completely,
- are not changed by measurement,
- can be copied
- can be erased.

Quantum bits:

- can be measured partially,
- are changed by measurement,
- cannot be copied (No cloning theorem)
- cannot be erased.

Quantum circuit

A quantum circuit provides an visual representation of a quantum algorithm.

Properties of Quantum Circuits

1. They are acyclic (no loops - runs once from left to right).
2. No FANIN, as FANI implies that the circuit is NOT reverisible.
3. No FANOUT, ${ }^{2}$ we can't copy a qubit's state during the computational phase because of the no-cloning theorem.

Single-qubit quantum logic gates

$$
\begin{aligned}
& \text { Pauli gates } \\
& \mathrm{X}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] ; \quad \mathrm{Y}=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right] ; \quad \mathrm{Z}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \\
& \text { NOT gate }|0\rangle-\nabla^{*} X \rightarrow|1\rangle \text {, } \\
& |1\rangle\rangle+\lambda \rightarrow|0\rangle, \quad \alpha|0\rangle+\beta|1\rangle \rightarrow X \rightarrow \beta|0\rangle+\alpha|1\rangle \text {. }
\end{aligned}
$$

Multiple-qubit quantum logic gates

Quantum Parallelism

Why are quantum computers capable of solving seemingly very difficult mathematical problems?

Since quantum states can exist in exponential superposition, a computatigrô of a function being performed on quantum states can prôcess an exponential number of possible inputs in a simgole evaluation of f :

By exploitingeâ phenomenon known as quantum interference, some global properties of f can be deduced from the output.

Quantum Computer

Takes n input qubits from register V , and producing n output qubits in register
F computes $\mathrm{W}=\sqrt{ } \mathrm{v}$
V is a superposition of ay integers from 0 to $2^{\text {n. }}$
F calculates the squate roots of all the integers in parallel. Measuring gives oply one of them in W .
We need to arrange F so that the probability amplitudes of the output state strongly favor the desired output from F.

Quantum Algorithms

Integer Factorization (basis of RSA cryptography):

```
Given \(N=p q\), find \(p\) and \(q\) ?
```

Discrete logarithms (basis of DH crypto):
Given N, g and x , compute r such that $g^{r} \equiv x(\bmod \sqrt[N]{N})$.

Computational Complexity Comparison

	Classical	Quantum
Factoring	$e^{O\left(n^{1 / 3} \log ^{2 / 3} \text { (ax }\right)^{3}}$	$O(n) \in e^{O(\log n)}$
Elliptic Curve Discrete Logarithms		$O(n) \in e^{O(\log n)}$

(in terms of number of group multiplications for n-bit inputs)

Which cryptosystems are threatened by Quantum Computers??

Information security protocols must be studied in the context of quantum information processing.
The following cryptosystems are insecure against such quantum attacks:

- RSA (factoring)
- Rabin (factoring)
- EIGamal (discrete log including ECC)
- Buchmann-Williams principal ideal distance problem)
- and others...

Quantum Information Security

We can exploit the eavesdropper detection that is intrinsic to quantum systems in order to derive new "unconditionally secure" information security protocols.
-Quantum key distributiontâvailable now/soon)
-Quantum random number generation (available now/soon)
-Quantum money ô(require stable quantum memory)
-Quantum digitaksignatures (requires quantum computer)
-Quantum se\&fet sharing (requires quantum computer)
-Multi-partoquantum computations

Quantum Information is Fragile

- low energy
- control ofóperations
- sugerpositions are very fragile
- isolation from environment

Devices for Quantum Computing

- Atom traps
- Cavity QED
- Electron floating on helium
- Electron trapped by surface acoustic waves
- Ion traps
- Nuclear magnetic resonance (NMR)
- Quantum opticis
- Quantum dots
- Solid stâte
- Spintronics
- Superconducting Josephson junctions
- and more...

