I - INTRODUCTION

The purpose of this project was threefold: to understand in detail the complete neglect of differential overlap (CNDO) approximate molecular orbital theory of Pople, Santry, and Sega ${ }^{1}$ as well as the intermediate neglect of differential overlap (INDO) theory of Pople, Beveridge, and Dobosh; ${ }^{2}$ to adapt a computer program of these theories to the computer facilities available to Sweet Friar and in so doing to gain an insight into algorithmic solutions to quantum chemical problems; and to apply the modified program to a simple problem, a bemparison of the effects of chlorine and fluorine on the and π electron densities in a series of substituted acetylenes and ethylenes.

II - THEORETICAL

Quantum mechanical theory has been developed to the extent that the Schroedinger equation for any hypothetical or real two-cody system can be solved exactly. (An example of a twobody system would be a system with one electron and one nucleus.) A problem with more than one electron around one nucleus, and, in the more complicated cases, more than one nucleys, presents insurmountable difficulties in the exact solution of the Schroedinger equation due to the increased complexi+ of the Hamiltonian and concurrently of the partial differential equation which must be solved. The time-independent Sch-Qedinger equation for the hydrogen atom, for example, is

$$
\begin{equation*}
\left\{-\frac{\hbar^{2}}{2 m} \nabla^{2}-\frac{z^{2}}{\sigma^{2}}\right\} \Psi(1)=E \Psi(i) \tag{1}
\end{equation*}
$$

where \hbar is Planck's constant $/ 2 \pi$ is the mass of the electron, $\nabla^{2}=\frac{\partial^{2}}{\partial z^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$, Le is the charge of the nucleus $\langle=1$ for hydrogen), e is the unit offelectronic charge and r the distance between the electron and he nucleus. In this expression the first term represents the quantum mechanical operator for the kinetic energy of the system wile the second is the potential energy of the electron in the field of the nucleus. Though this equation is a partial differential equation of the second degree with three variables it can be solved by separation of variables as discussed in most quantum mechanics textbooks. ${ }^{3}$

In contrast to the above soluble differential equation is the Schroedinger equation for the many-electron, many center problem which must include the interactions between all the alectrons and between the electrons and nuclei. The Hamiltonian for

such a system is given by
(2) $H^{\text {totst }}(1,2, \ldots N ; 1,2, \ldots r)=-\frac{k^{2}}{2} \sum_{A}^{N} M_{A}^{-1} V_{A}^{2}$

$$
+\sum_{A=B} c^{2} z_{A} z_{e} r_{A B}^{-1}-\frac{K^{2}}{2 m} \sum_{p}^{m} \nabla_{p}^{2}-\sum_{A} Z_{B} e^{2} z_{A} r_{A P}^{-1}+\sum_{B}^{A} e_{r}^{-1}
$$

In the above expression $M_{A}=$ the mass of nucleus A, m and e are electronic mass and charge, $Z_{A} e$ is the charge of nucleus A, and $r_{i j}$ is the distance between electron i and electron j. (Note that capital subscripts refer to nuclei and subscripts the lower case to electrons.) Inspection of the Hamiltonianreveals that kinetic energy terms for all the nuclei and epstrons are included as well as the potential energy due to the interaction of each particle with all other particles of the system.

The Schroedinger equation for a sotem with n particles and N nuclei thus becomes a partial differential equation of $3 N+3 n$ variables, each variable being described by three cartesian coordinates.
(3) $H^{\text {torit }}(1,2, \ldots, N ;, 2, \ldots, n) \cup(i, 2, \ldots N ; 1,2, \ldots n)$

F $\mathbb{F}(1,2, \ldots N ; 1,2, \ldots n)$
This equation cannot be olved exactly.
Though solutions to Schroedinger equation for the H atom are of great theoretiçal interest, there has been a continuous effort among chemsts to extend the practical application of the equation to more complicated systems through scientifically sound and meaningful approximations. A recent approximation developed by Pople, Santry and Segal is the complete neglect of differential overlap (CNDO) theory; ${ }^{1}$ the intermediate neglect of differential overlap (INDO) theory of Pople, Eeveridge, and Dobosh ${ }^{2}$ is derived from the CNDO framework.

The CNDO method indirectly utilizes several general approximations which are common to many approximate molecular orbital theories as well as specific approximations which make it unique. One such general approximation is the Eorn-Oppenheimer approximation which states that the nuclei of a system can be considered stationary relative to the motion of the electrons in their fields. In reality the nuclei of a system aye in motion as are the electrons. The mass of any nucleus is se much greater than the mass of an electron that its velocity ran be neglected when compared with the much greater velocity of an electron. In the case of the hydrogen nucleus, for exams where this approxmation introduces the greatest amount ofror, the mass of the nucleus is over 1800 times that of the electron; thus even here the error is small. This assumption seduces the complexity of the problem considerably; one must calculate only n wavefunctions and energies corresponding to the electrons in motion around N stationary nuclei. The Hamiltonian of equation (3) becomes

and the Schroedinger equation
(5)
 n) $\psi^{\text {alec }}$ $(1,2, \ldots, n)=\varepsilon \psi(1,2, \ldots n)$

It is important to note here that due to the Born-Oppenheimer approximation only the electronic energy eigenvalues are calculated. In order to include the internuclear repulsion one must add
(6) $\sum_{A=3} e^{2} z_{A} z_{B} r_{A C}^{-1}$

with $Z_{A} e$ the charge on nucleus $A, Z_{\hat{0}}$ e the charge on nucleus E and $r_{A B}$ the internuclear distance. The expression for the total energy of a system using the Born-Oppenheimer approximation is therefore
(7) $E^{\text {totat }}=\varepsilon^{\text {cice }} \div \sum_{A \in \Omega} e^{2} \bar{Z}_{A} z_{B} r_{A B}^{-1}$

Molecular orbital theory is chiefly concerned with the wavefunctions which describe the motion of electrons with respest to the nuclei, as this motion results in the phenomenon of a Rovalent chemical bond between two or more nuclei. The Born-gppenheimer approximation's focus on electronic wavefunction is viable if this is kept in mind, and this approximation thus can be considered "scientifically sound."

A second fundamental approximation utilized in approximate molecular orbital theories is the orbital approximation. The underlying assumption of this appromation is that a satisfactory manyelectron molecular orbital wavefunction Vecan be constructed from a product of functions each of which depends on the coordinates of one electron only.
(The parenthetical numbers in equation 8 refer to electronic coordinates.) By definition each function ϕ_{i} is known as an orbital, in the case of an atom, an atomic orbital and in the case of a molecule, a molecular orbital. As Pople and Eeveridge point out, ${ }^{4}$ if the true Hamiltonian could be constructed as a sum of operators depending only on the coordinates of one electron, then a separation of variables approach could yield exact solutions to the

Schroedinger equation for the system. This, as has been shown, however, is not the case (see equation (3)), and the assumption that the molecular wavefunction is of the above form introduces an approximation and some degree of error.

As well as these general approximations, a specific theoretical framework - the variational method - is used in the CNDO and other approximate molecular orbital methods as a general approach to the solution of the complex proolem/ (his method is based on the variational theorem which, accoraing to Dewar, 5 states that "the expectation value of H for an arbitrary wellbehaved function Ψ is not less than the 1 drest eigenvalue E_{0} of H " where the expectation value E is give by

$$
\text { (9) } E=\frac{\int \psi^{*} H \psi d T}{\int \psi^{*} \psi d T}
$$

For proof of this theorem the remder may refer to Molecular Quantum Mechanics by P. W. Athins as well as other quantum chemistry texts. If one app1Ned the variational method to a completely flexible wavefuntion with an infinite number of variable parameters one Sould ootain all the correct wavefunctions and eigenvaluefor the Hamiltonian. Such an application is not feasible formathematical as well as practical reasons, however, but the approach can be applied to incompletely flexible functions which can be varied and minimized with respect to only a given few parameters. The set of functions thus obtained are approximations to the true wavefunctions, and the energies corresponding to the ψ_{i} are functions of the variable parameters. The variation theorem, then, provides a method for adjusting the variable parameters of some arbitrary trial wavefunction to opti-

mize the correspondence of that wavefunction to the true wavefunction. (For example, if $E(k)$ is found to be an eigenvalue of some arbitrary wavefunction $\Psi(k)$, the variation method calls for minimization of $E(k)$ with respect to $k(\partial / \partial k E(k)=0)$ and a solution for the minimum value of k. Substitution of the minimum value of k into $E(k)$ will yield $E_{\min }$, and substitution of the minimum value of k into $\psi(k)$ will, according to the variational theorem, give the best approximate wavefunction using the give/ parameter.) A convenient choice of eigenfunction in the Relational method is often a set of functions which are lineal combinations of atomic orbitals. (LCAO).

$$
\begin{equation*}
\Psi_{i}=\sum_{\mu} c_{\mu i} \phi_{\mu} \tag{10}
\end{equation*}
$$

where dare atomic orbitals and core weighting coefficients. A further requirement imposed br the ICAO approximation is that the molecular orbitals be orthonormal. That is,

$$
\begin{equation*}
\sum_{\mu v} c_{\mu i}^{*} c_{\mu}>S_{\mu v}=\delta_{i j} \tag{11}
\end{equation*}
$$

where $\delta_{i j}$ is the Kroneckg delta and $S_{\mu v}$ is the overlap integral
(12) $S_{\mu}=\int \phi_{\mu}(1) \phi_{v}(1) d \tau$.

The above brief discussion of some of the important general approximations and the methods used in approximate molecular orbital theories leads to a more rigorous analysis of the CNDO and INDO methods. The following formulations of these theories will deal with closed-shell systems only.

As well as being based on the above general approximations, the CNDO method is a simplification of the LCAO approach to the

Hartree-Fock, self-consistent field (SCF) method. The LCAO/SCF approach leads to Roothaans algebraic equations.

The Hartree-Fock equations are
(13) $F \Psi_{i}=\varepsilon_{i} \Psi_{i} \quad i=i, n$
where
and
(14) $F=\left[H^{\text {com }}+\sum_{j}\left(2 J_{i}-K_{j}\right)\right]$
(15) $J_{i}(1)=\int \psi_{i}^{*}(2) \frac{1}{r_{12}} \psi_{i}(2) r_{2}^{r}$
(16) $K_{j}(1) \psi_{i}(1)=\left[\int \psi_{j}^{*}(2) \frac{1}{D_{2}} \psi_{i}(2) d T_{2}\right] \psi_{j}(1)$

In the above equations $H^{\text {core }}$ refers to the Hamiltonian of an alectron in the field of a bare nucleus and to the interelectronic distance. The eigenvalues of the above Hamiltonian F are
(17) $\left.\quad \varepsilon_{i}=H_{i i}^{\text {core }}+\sum \sum_{i j}-K_{i j}\right)$
where
and
(18) $J_{i j}=\iint \psi_{i}^{*} \cdot \psi_{j}^{*}(2) \frac{1}{r_{i 2}} \psi_{i}(1) \psi_{j}(2) d T, d \tau_{2}$
(19) $K_{i j}=\iint_{i}^{+}(1) \psi_{j}^{*}(2) \frac{1}{r_{12}} \Psi_{j}(1) \psi_{i}(2) d T_{1} d \tau_{2}$
$J_{i j}$ and $K_{i j}$ are known as Coulomb" and "exchange" integrals respectivery. Jj represents fec repulsion between electron 1 in orbital ψ_{i} and electron 2 in orbital ψ_{j} when the electrons are moving ingependently of each other. (Note that $\psi_{i}^{*} \psi_{i}$ and $\psi_{j}^{*} \psi_{j}$ by definition each represent a charge distribution, the probability of finding an electron in a given position.) Similarly the exchange integral $K_{i j}$ has the physical interpretation that it represents the reducetion in electron repulsion between two electrons in different

orbitals with parallel spins.?
If the molecular orbitals $\because:$ are approximated as linear combinations of atomic orbitals, Roothaans equations are obtained. Substitution of the LCAO expansion of equation (10) into the Hartree-Fock equations yields
(20) $\sum_{v}\left(F_{\mu v}-\varepsilon_{i} S_{\mu v}\right) c_{v i}=0$
where
(21) $F_{\mu v}=H_{\mu v}+\sum_{\lambda \in} P_{\lambda G}[(\mu v \mid \lambda a) \gamma-1 / 2(\mu \lambda \mid v o)]$
(22) $H_{\mu v}=\int \phi_{\mu}(1) H^{\text {core }} \phi_{v}\left(\frac{N}{r} \tau_{1}\right.$
(23) $D_{\lambda \Delta}=2 \sum_{i}^{0 \text { On c }} c_{\lambda i}^{*} c_{\theta i}$
and

The quantity ($\mu v i \lambda \theta$) is known as an electron interaction integral; electron (1) is assumed to ge the left-hand side of the operator and electron (2) on the rigrr-hand side.

The equations (20) $)^{\text {al }}$ be written in matrix form and transformed to the form of Standard eigenvalue problem. If this is done the elements Gill be roots of the secular determinant $^{\text {will }}$ be

$$
(2 \zeta)\left|F_{\mu v}-\varepsilon S_{\mu v}\right|=0
$$

and each element ε_{i} will be an energy eigenvalue of the molecular orbital ψ_{i}. In equation (21) $H_{\mu v}$ is the expectation value for the core Hamiltonian interacting with electron (1) in atomic orbital ϕ_{μ} and electron (1) in atomic orbital ϕ_{v}. (Note that suffixes μ and γ refer to molecular orbital Ψ_{i}, and λ and θ to molecular orbi-

tal Ψ_{j}.) In equation (23) P_{20} is summed over the occupied molecular orbitals only, and the matrix composed of the elements $P_{i o}$ is referred to as the density matrix.

The series of steps used in solving the secular determinant in equation (25) is equivalent to that used in the more approximate CNDO approach. An initial set of linear expansion coefficients is assumed from which is determined an initian density matrix (see equation (23). A first guess at the (arix elements Fuv can then be made. After diagonalization a new set of coefficients is computed, and the process is repealted until a comparison of old and new values of the coefficients or some other chosen parameter is within a specified tolerancelimit.

The LCAO/SCF method can be appliewithout modification to simple systems, but computationa limitations have resulted in the growth of more approximate self-consistent field methods which seek to avoid the evaluation on many of the electron repulsion integrals, most of which actually have values near zero when calculated. Pople propose the combinations of the zero differential overlap (ZDO.) Approximation ${ }^{8}$ with a semiempirical determination of other parmeters for the is electrons of aromatic systems. ${ }^{9}$ The 2DO Aproach is based on systematic neglect of the overlap of certain pairs of electrons in different orbitals. According to this approximation
(26) $(\mu v \mid \lambda \omega)=(\mu ; / \lambda \lambda) \varepsilon_{\mu v} S_{\lambda c}$
where $\delta_{c j}$ is the Kronecker delta. Further, the corresponding overlap integrals
(27) $S_{\mu v}=\int \phi_{\mu}(1) \delta_{v}(i) d r$.
are neglected in the normalization of the molecular orbitals.

It is important to note, however, that the core integrals

$$
\text { (28) } H_{\mu v}=\int \phi_{\mu}(i) H^{\text {cors }} \phi_{v}(1) d \tau_{1}
$$

involving an overlap distribution are not neglected by this method; the terms have a possible effect on bonding.

Thus while not ignoring all such interactions as does the Huckel method, the $2 D O$ treatment is not as rigorous as the above complete LCAO/SCF approach. Pople; Santry, and Resal's formulation of CNDO theory ${ }^{1}$ signifies a significant Favance in approximate molecular orbital theory in that the zpo approximation is extended to a system involving all valencelelectrons rather than just the π electrons of the molecule, the inner electrons being treated as part of a rigid, non-polarzáble core.

Pople, Santry, and Segal as wes as Pople and Eeveridge 10 discuss the importance of maintalining invariance with respect to certain transformations of the det of basis functions ϕ_{μ} at all levels of application of the RDO approximation. These transformations are (1) transformatins mixing orbitals of the same principle and azimuthal quantum Hembers n and 1 (a mixing of $2 p_{x}$ and $2 p_{j}$ orbitals, for example and (2) transformations mixing any atomic orbitals on the same atom (hybridization of orbitals, for example.) The ICAO/SCF methoa will lead to the same wavefunctions and properties regardless of these transformations; any approximation to the method, however, might remove this invariance.

Because the ZDO approximation is applied to atomic orbitals only, the differential overlap $\phi_{\mu} \phi_{v}$ may be monotomic (atomic orbitals centered on the same atom) or diatomic (atomic orbitals centered on different atoms.) In the case of a monotomic overlap

$\$_{\mu} f_{\text {: }}$ on the same atom, the simple rotation of axis transformation such as transformation (1) may lead to variant results unless this possibility is considered in the development of the theory. In the CNDO method in particular the $2 D O$ approximation is used for all products of different atomic orbitals $\boldsymbol{i}_{\mu} \phi_{\nu}$. To restore invariance under all transformations a further approximation is added to those of the 2DO approximation - What the electron interaction integrals which remain depexd only on the atoms A and B to which the orbitals ϕ_{μ} and ϕ_{v} bed fig and not on the type of orbital.
(29) $(\mu \mu \mid \gamma r)=\gamma_{A S}\left\{\begin{array}{lll}\text { ale } \mu \sim \text { atom } & A \\ \text { ass } Q \text { atom } & B\end{array}\right\}$ $\gamma_{\text {A }}$ physically measures an average repair between an electron in one of the valence orbitals of aton and an electron in one of the valence orbitals of atom B.

If the atomic orbitals of the Oasis set are transformed into orbitals which themselves are Anear combinations of the originail atomic orbitals,
(31)
(32)

(33)

$$
\phi_{\delta}^{\prime}=\sum_{\theta}^{3} t_{\theta s} \phi_{0}
$$

then it can be shown that equation (29) restores invariance. The electron interaction interaction ($\mu \nu / \lambda \theta$) becomes

$$
\text { (34) }(a \beta!\gamma \delta)=\gamma_{A s} \delta_{\gamma \delta} \delta_{a \beta}
$$

based on the orthonormality of the transformation matrices t. (In equation (34) $\delta_{i j}$ is the Kronecker delta.) These transformations thus do not cause equation (29) to vary.

Application of the $2 D O$ approximation to the elements of the Pock Hamiltonian matrix of equation (21) gives

$$
\text { (35) } \begin{aligned}
F_{\mu \mu} & =H_{\mu \mu} \div \sum_{\lambda} P_{\lambda \lambda}\left[(\mu \mu \mid \lambda \lambda)-I_{2}(\mu \lambda!\mu \lambda)\right] \\
& =H_{\mu \mu}-1 / 2 P_{\mu \mu}(\mu \mu!\mu \mu)+\sum_{\lambda} \beta_{\lambda \lambda}(\mu \mu!\lambda \lambda)
\end{aligned}
$$

For the case in which $\mu \neq v$
(36) $F_{\mu v}=H \mu v-1 / 2 P_{\mu v}(\mu \mu \nu)$

Adding the further approximations of cation (29), the diagonal Pock matrix elements become
(37) $F_{\mu \mu}=H \mu \mu-1 / 2 B_{\mu \mu} \gamma_{A A}+\sum_{3} P_{S B} \check{\gamma}_{A B} \quad\left(\phi_{\mu} o n A\right)$ and the elements for which $\mu \mathcal{F}$
(38) $F_{\mu V}=F_{i} \nabla_{1 / 2} P_{\mu V} \gamma_{A B}$

In equation (37) the pollination matrix P_{83} is the total electron density on atom B.
(39)

$$
P_{B B}^{B}=\sum_{\lambda}^{B} P_{\lambda \lambda}
$$

The core Hamiltonian operator, which consists of the potential due to the nucleus and the inner non-valence shells, is also modified according to the approximations proposed. If

$$
\text { (40) } H=-1 / 2 \nabla^{2}-\sum_{3} V_{3}
$$

where $-V_{s}$ is the core potential of atom B, the diagonal elements

elements $H_{\mu \mu}$ of the Hamiltonian may be thought of as a sum of one-center and two-center terms. (A one-center term is a term involving only one atom, while a two-center term involves interatomic interaction between two atoms.) These diagonal elements represent the interaction of an electron in ϕ_{μ} centeredion atom A with the core of A as well as with the cores of other atoms. Separating into one and two-center contributions
(41) $H_{\mu \mu}=U_{\mu \mu}-\sum_{3 \neq A}\langle\mu| V_{B}|\mu\rangle \nabla\left(\phi_{\mu}\right.$ on $\left.A\right)$
where
(42) $L_{\mu \mu}=\left\langle\mu 1-1 / 2 \nabla_{2}^{2}-V_{\mu,}\right\rangle$
(43) $\langle\mu| V_{B}|\mu\rangle=\int \phi_{\mu} d \tau$
and
(44) $<\mu!-\eta_{2} \nabla^{2}-V_{f_{s}}|\mu\rangle \int d_{\mu}\left(-1 / 2 \nabla^{2}-V_{f_{f}}\right) \dot{\phi}_{\mu} d T$ According to equation (44) U_{1} a one-center term, and since ϕ_{μ} is on atom A, the integrapresents the interaction of an electron in orbital ϕ_{μ} with ts own core potential. The second term of equation (41) reftes the potentials of all other atoms B to the electron in coital di+ on atom A it is the two-center contribution to the ore Hamiltonian element $H_{\mu \mu}$.

The off-diaconal terms deal with two different atomic orbitais ϕ_{μ} or ϕ_{v} which may both be on atom A or which may be on diffferent atoms. When ϕ_{μ} and ϕ_{v} are both on atom A
(45) $H_{\mu v}=U_{\mu v}-\sum_{s(f a)}\left\langle\mu!V_{B}: v\right\rangle\left(\phi_{\mu}: \phi_{v}\right.$ on comm $\left.R_{i}\right)$ Because the choice of a hybrid basis set (not s, p, d functions) leads to non-zero $U_{\mu v}$ elements in equation (45), the CNDO method is restricted to the use of s, p, d functions. This choice for a

basis set causes $U_{\mu v}$ to be zero by symmetry. The second term in equation (45) represents the interactions of the charge distribution $\hat{\phi}_{\mu} \phi_{,}$with the cores of other atoms E. These terms lead to a further approximation which is consistent with the 2DO approximation, that these interactions are set equal to zero unless $\phi_{\mu}=\delta_{v}$, in which case they are considered equal for all valence orbitals on A. No differentiation is made between types of orbitals based on quantum numbers. This approximation $1 \geq / 0$ s. invariance to be maintained. According to these added approximations

$$
\begin{equation*}
\left\langle\mu_{0}\right| v_{3}|v\rangle=0 \tag{46}
\end{equation*}
$$

(47)
(48)
and

The remaining matrix elements $H_{\mu v}$ to be considered are the elements dealing with atormitals ϕ_{μ} and f $_{\sim}$ on different atoms A and B. Neglecting thin -center terms, the CNDO method assumes that $H_{\mu r}$ is dependent only on the potential of the two atoms in question and not of the potentials of any other atoms. The term $H_{\mu v}$ thus deals with the effect of two electrostatic fields on the energy levels of an electron and is referred to as the "resonance integral" $\beta_{\mu v}$. In this case

$$
\text { (50) } \quad H_{\mu v}=\langle\mu|-1 / 2 \nabla^{2}-V_{A}-V_{B}|v\rangle=\beta_{\mu v}
$$

estimation of a value for the resonance integral,
(51) $H_{\mu \nu}=\hat{S}_{\mu \nu v}=\hat{S}_{n .3}^{*} S_{\mu v}$
where $S_{\mu r}$ is the overlap integral. This approximation formulates $\beta_{\mu v}$ in terms of a known integral $S_{\mu v}$ (one which has already been calculated) and an empirical parameter $\beta_{A c}^{0}$ which is adjusted to achieve the best energy values for a given system. In order to maintain invariance, however, the parameter $\beta_{\text {ri c }}^{0}$ must be the same for all orbitals on the two atoms in question. It cape dependent on interatomic distance, however.

The approximations thus employed by the NDO method are
(a) the zero differential overlap ansoximation
(52) $(\mu v \mid \lambda 0)=(\mu \mu: v v) \delta_{\mu v} \delta_{\lambda o}$
which also calls for the neglect of the overlap integral $S_{\mu v}$ in the normalization of the molecular orbitals and sets $S_{\mu v}=0$ unless $\mu=v$
(b) the averaging of thelectron interaction integral between ϕ_{μ} on A and ϕ_{λ} on B
(53) $(\mu \mu \mid \lambda i))^{-r}$

$$
\left\{\begin{array}{lll}
\phi_{\mu} & \text { on } A \\
\phi_{A} & \text { on } B
\end{array}\right\}
$$

(c) the approximation of the interaction of $\phi_{\mu} \phi_{v}$ with other cores as zero if $\phi_{\mu} \neq \phi_{v}$ and $V_{n 2}$ if $\phi_{\mu}=\phi_{V}$

$$
\begin{equation*}
\left\langle P M V_{B} \mid v\right\rangle=0 \tag{54}
\end{equation*}
$$

(55) $\langle\mu| V_{B}|\mu\rangle=V_{A B}$
and lastly
(d) the approximation of resonance integrals through use of a proportionality factor

$$
\text { (56) } H_{\mu v}=\beta_{A B}^{0} S_{\mu v} \quad\left(\phi_{\mu} \text { on } A, \phi_{v} \text { on } B\right)
$$

The final Pock matrix elements reduce to

(57) $F_{\mu \mu}=U_{\mu \mu}+\left(P_{A B}-1 / 2 P_{\mu \mu}\right) \gamma_{A A}+\sum_{B \neq n}\left(P_{B B}^{\gamma} \gamma_{A B}-V_{B J}\right)$
(58) $F_{\mu v}=\hat{P}_{A B}^{0} S_{\mu v}-!_{2} P_{\mu v} \gamma_{A B} \quad(\mu+v)$
where ϕ_{μ} is on A and ϕ_{v} on B. If ϕ_{μ} and ϕ_{V} are both on the same atom A
(59) $F_{\mu v}=-1 / 2 P_{\mu v} \gamma_{A B}$

The diagonal elements $F_{\mu \mu}$ may be written
where Q_{3} is the net charge on atom B.
(61) $Q_{B}=Z_{B}-P_{B B}$

The quantity $Z_{B} \gamma_{A B}-V_{A S}$ is known as a penetration integral and is the difference between the potentials to the valence electrons and the core of atom B.

After developing the CNDO theory, Pole and Segal follow with a discussion of possible methods for calculation and choice 11 of parameters. The original formulation is known as the CNDO/1 parametrization. They Since have proposed a second and more successful method, te cNDO/2 parametrization. ${ }^{12}$ As well as choosing a basis set, in the CNDO method one must empirically determine or otherwise specify values for the overlap integral $S_{\mu v}$, the core Hamiltonian elements $U_{\mu \mu}$, $V_{A B}$, the electron-repulsion integrals $\gamma_{A G}$ and the bonding parameters $\beta_{A G}{ }^{\circ}$.

A logical choice of basis functions would seem to i be the hydrogenic wavefunctions. These wavefunctions, however, are expressed as products of an angular and a radial part, the latter

of which is mathematically complex and necessitates the evaluation of difficult integrals. For this reason the atomic orbitals in the CNDO method are chosen to be combinations of the spherical harmonics $Y_{2 m}(\theta, \dot{\theta})($ the angular hydrogenic solution) and Slater functions ${ }^{13}$ radial-like functions which are less complex than the true radial hydrogenic solutions. Slater functions are nodeless with an orbital exponent 5 which is determined by application of an empirical set of rules, Slater's rules. (In the ENDO approximation the exponent for hydrogen, however, is given a value of 1.2 instead of 2.6 , the value determined by slater's rules; 1.2 is more in accord with the best value for the constant the LCAO calculation for the hydrogen molecule.) The CNDO/1 parametrization was originally formulated only for mole riles composed of atoms H through F.

The overlap integral $S_{\mu v}$ is generally calculated in the following way: the overlap integral may be written
(62) $S_{a b}=\int \Omega_{a b}(1) \hat{S}^{+}$
where $\Omega_{a b}$ is ahcharge distroution function and is a product of any two Slater-type-orbyls (STO) x_{a} and x_{b} which are themselves specified by principe azimuthal and magnetic quantum numbers (n, l, m).
(63) $\Omega_{a b}(1)=x_{a}(1) x_{b}(1) \quad\left\{\begin{array}{l}x_{a} \text { on atom } A \\ x_{b} \text { on aton } B\end{array}\right\}$
if x_{a} and x_{b} are on the same atom,
(64) $\quad S_{a b}=0 \quad x_{a} \neq x_{i b}$

$$
S_{a i b}=1 \quad x_{a}=x_{b}
$$

The charge distribution $\Omega_{u_{0}}(1)$ is written as a product of the analytical form of the STO's in spherical coordinates. If

$$
(65) x_{a}(r, 0, \phi)=N_{a} r^{n_{2}-1} \exp \left(-\int_{a} v\right) Y_{i_{a} m}(0, \phi)
$$

$\Omega_{a b}(1)$ becomes

$$
\text { (66) } \begin{aligned}
\Omega_{a b}(1) & =N_{a} N_{b} r_{A}^{N_{A}^{-1}} r_{B}^{n_{b}-1} \exp \left(-J_{a} r_{A}-\int_{\varnothing} \gamma_{B}\right) \\
& x \Theta_{i_{a} m}\left(\cos \Theta_{A}\right) \Theta_{S_{b} m}\left(\cos \theta_{B}\right) \Phi_{M}^{2}
\end{aligned}
$$

(The functions $\Theta_{i_{a}}\left(\cos \theta_{A}\right) \delta_{n}^{\delta}(\sigma)$ are the real normai+ed shperical hearmonies $\left.Y_{2}^{\prime \prime}(0, \phi).\right) \Omega_{n_{i}}(1)$ is transformed to elliptical coordinates and the integration is carried out over Q. The result of this integration is the reduced overlap intel, an expression involving one or more basic two-center integral "which is subsequently intergrated over the μ and v coordinates to yield the value for the overlap integral.

The electron repulsion ixtooral $\gamma_{\text {ae }}$ is calculated as a twocenter integral involving valence s functions.
(67) $\gamma_{A G}=\int_{R}^{2}(1) \frac{1}{r_{1}=S_{B}^{2}(2) d T_{1} d \tau_{2}}$

Using Slater s functions

where R is the distance between atom A and atom B, and $\Omega_{a a}(1)$ and $\Omega_{6}(2)$ are the products of Slater s functions and represent charge distributions. The operator $\frac{1}{r_{12}}$ is developed according to a given expansion. and the coulomb integral rearranged accordingly,

$$
(69) \gamma\left(n_{a}, n_{b}, J_{a}, f_{b}, R\right)=\int \Omega_{a_{a}}(1) I\left(n_{b}, f_{b}, 1\right) d \tau_{1}
$$

where I is the potential of electron 2 at the position of electron 1. (70) I $\left(n_{i}, J_{b}, 1\right)=\int \frac{1}{r_{>}} \Omega_{i 6}(2) d \tau_{2}$

In equation (70) $\frac{1}{r_{>}}$is the final form of the operator $\frac{1}{r_{13}}$ based on the development according to the expansion. $r>$ represents the greater value between r_{1} and r_{2} where r_{1} and r_{2} are the radii arrived at in the expansion and transformation to spherical polar coordinates.

The two-center coulomb integral is then sopyed in two steps, the first being an evaluation of the potentiaN (n, j, j) by integration of equation (70) over spherical polat coordinates centered on b and the second a multiplicat of the results of the first step by $\Omega_{a n}(1)$ and integration ovep coordinates of electron 2 in elliptical coordinates. The se Qna integration is done through use of the reduced overlap integraN

The third empirically determined value, $V_{A B}$, representing the interaction of a valence/electron of atom A with the core charge of atom B, is calcuifed through use of a valence s orbital on A and through the assumption that the core charge of atom E is centeredat a point the nucleus rather than dispersed throughout the nucleus and nner shells (as likely is the case).

$$
\text { (71) } V_{R B}=z_{B} \int S_{A}^{2}(1)\left(\frac{1}{r_{1 B}}\right) d \tau_{1}
$$

Z_{B} is the core charge of atom B, and $r_{1 c}$ is the distance between electron 1 and nucleus B. This integral is handled in the same general way as the overlap integral with s being a Slater s type orbital.

Calculation of the atomic matrix elements of the oneelectron core Hamiltonian $U_{\mu \mu}$ is based on observed atomic energy

levels. Applying the CNDO approximations, atoms from Li through F have energies

$$
\text { (72) } E\left(X, 2 s^{m} 2 p^{n}\right)=m U_{2 s, 2 s}+n U_{2 p, 2 p}+1 / 2(m+n)(m+n-1) \varkappa_{i n}
$$

where X is the atom in question and $\gamma_{N A}$ is the CNDO approximaltion of the electron repulsion integrals. Equation (72) refers to an electronic state, and since degeneracy occurs dye to the neglect of exchange integrals in the CNDO method an average of the energies of all the states having the given configuration is used in calculating the $U_{\mu, L}$ elements. Further, the $U_{\mu \mu}$ integrals are related to ionization potentials or electron affinities of given states, experimental lues of either of the two being used in the determination of $\mathrm{U}_{\mu \mu}$. The γ parameters previously determined are also used in this calculation.

Having empirically calculated $U_{\mu \mu}$, the only remaining parameter to be specified is $\beta_{n} \beta_{A G}^{\circ}$ is assumed to be a sum of contributions from atom A and atom B.

$$
\begin{equation*}
\beta_{A G}^{0}=1 Q\left(\beta_{A}^{0}+\beta_{B}^{0}\right) \tag{73}
\end{equation*}
$$

The values of P_{B}° and Pare chosen to give the best fit with accurate LCAO/SCF COPulations using the valence shell basis set. These values, then, are based on the assumption that the LCAO/SCF calculations are the best calculations obtainable.

With the determination of the parameters $S_{\mu v}, U_{\mu M}, V_{n B}, \gamma_{A B}$ and $\mathcal{F}_{A B}$. the solution of the problem calls for a cycle of steps similar to that discussed for the LCAO/SCF method. The initial guess of the molecular orbital coefficients is made by setting $F_{\mu \mu}$ equal to the appropriate ionization potentials for the state

being considered and by setting $F_{\mu v}=S_{\mu v} \beta_{a c}{ }^{6}$. The latter is similar to the familiar Hückel approximation in that all off-diagonal elements are set equal to constants, $S_{\mu \omega v} \hat{\beta}_{A z}^{\circ}$. Diagonalization of this extended-Hückel approximation to the Fock matrix yields a set of eigenvectors (the coefficients) and eigenvalues (orbital energies). Electrons are then paired, and the pairs assigned to the molecular orbitals with lowest energies. Using the values of the coefficients, the density matrix is compute χ which subsequently is used in the determination of new coefricients. The cycle is thus
(a) an initial guess at the Fock wairix by a Huckellike approximation
(b) diagonalization of the madex to yield a set of energies and molecular ontital coefficients
(c) determination of the rensity matrix $P_{\mu v}$ from the coefficients computern (b)
(d) formation of a new fock matrix using the density matrix of (c) (seg equations (57). (58), and (59))
Steps (b). (c), and (d) are repeated until a given parameter remains within a specified mit, at which time the molecular orbitals determined are Seclared "self-consistent."

The CNDO/2 param@erization ${ }^{12}$ attempts to rectify some of the discrepancies botween calculated CNDO/1 molecular properties and corresponding experimentally determined values. When testing the CNDO/1 parameterization Pople and Segal found that it was unsatisfactory if used to estimate equilibrium internuclear bondlengths. ${ }^{10}$ For example, the bond length computed for $H F$ was 0.581 Â, well below that experimentally determined, $0.92 \hat{A}$. As a result, the dissociation energies calculated were also well

off from the experimental data. It was found that the penetration integrals $\left(Z_{0} \gamma_{P-B}-V_{A O}\right)$ were the source of the problem since they gave rise to bonding energies when there should have been none. The CNDO/2 method accordingly neglects altogether this term by

$$
(74) \quad V_{A B}=\gamma_{A B}
$$

Due to equation (74) the penetration integral obvjeasly becomes zero.

The second difference between the CNDO/1 and CNDO/2 theories deals with the computation of $U_{i \mu}$. In the $\sqrt{N O / 1}$ theory jonization potentials were used or, alternatively, electron affineties. The CNDO/2 procedure is to use a@average of both ionization potentials and electron affinity to account for the tendency of the atomic orbital to lose and gain electrons. The CNDO/2 alterations of CNDO/1 parameterizations cause equation (57) to become
(75) $F_{\mu \mu}=-1 / 2(I_{\mu}+\underbrace{A}+\left[\left(P_{A A}-z_{n}\right)-1 / 2\left(P_{\mu \mu}-1\right)\right] \gamma_{A A}+\sum_{E C \neq A)}\left(P_{B B}-z_{B}\right) \gamma_{A B}$ where I_{μ} is the ionization potential of atomic orbital d $_{\mu}$ and $A \mu$ is the electron affix 0 ty of the orbital.

Aside from modications in the method for determination of $U_{\mu \mu}$ and the neglect of the penetration integral, the features of the CNDO/2 theory are the same as those of the CNDO/1 theory. In the CNDO/2 method other parameters are calculated as in the CNDO/1 method, and the same self-consistent-type cycle is used to obtain a solution. These two changes, however, improve the success of the calculations with respect to bond lengths and dissociation energies.

The CNDO/1 and CNDO/2 parameterizations were originally proposed for molecules composed of atoms through atomic number 9 (fluorine) with a maximum oi 4 basis functions per atom (2 s , $2 p_{x}, 2 p_{y}$, and $2 p_{z}$). The difficulties of extending the theory through the second row of elements (through chlorine) are practical ones. Few accurate LCAO/SCF calculations for heavier atoms are available for comparison of results, and atomic energy levels of the Sd atomic orbitals are also difficult to Stain. Santry and Segal attempt to extend the theory, ${ }^{14}$ nowere . considering first a basis set of five 3 a atomic orbitals \mid with the same radial part as the $3 s$ and $3 p$ functions (the cpd se and second, a basis set with more accurate d functions (the sgd' set). The latter involves modifications in the CNDO/2 theory but will not be discussed because the former is the bor set for the heavier atoms sodium to chlorine in the computer program to be discussed in the next section.

Calculations using an spa basis set rely on the CNDO/2 parametrization as discussed above with a difference in the method of estimating bonking parameters $\beta_{A B}^{\circ}$.
(76) $\beta_{A B}^{0}=\beta^{1 / 2} k\left(\beta_{A}^{0}+\beta_{C}^{0}\right)$

If A is a second-row element and C a first-row element, \hat{f}_{A}° is approximated by the proportionality relation

$$
\text { (77) } \beta_{A}^{0}=\beta_{c}^{0} \frac{U_{3 s, 3 s}(A) \div U_{2 p, 3 p}(A)}{U_{2 x, 2 s}(C)+U_{2 p, 2 p}(C)}
$$

where U refers to the core Hamiltonian elements. The proportionality constant K is set equal to unity if only first row atoms are involved but is given a value of 0.75 if either A or B is a second-

row element. Such a proportionality constant was found to improve the overall estimation of $\beta_{A E}^{\circ}$ values.and thus of the theory itself.

Following the formulation of the CNDO/2 parametrization, Pople, Beveridge, and Dobosh proposed the intermediate neglect of differential overlap (INDO) method ${ }^{2}$ to alleviate problems in the CNDO calculation for open-shell systems. The CNDO method frequently does not account for separation of states arising from the same configuration, nor, in some cases, Noes it yield spin densities in the θ orbitals of open-shell modules. ${ }^{2}$ Each of these problems is closely related to the deflect of the twoelectron exchange integral
(78) $(\mu v \mid \mu v)=\iint \phi_{\mu}(1) \phi_{\mu}(2) \frac{1}{\rho_{2}} \oint_{v}(1) \phi_{v}(2) d T_{1} d r_{2}\left\{\begin{array}{l}\mu+v \\ \phi_{\mu}, \phi_{v} \sigma_{1} r_{1}\end{array}\right\}$

For this reason the INDO method reform monatomic differential overlap in one-center integrals. the this way the elements of the Fock matrix are modified by
and
(79) $\left.F_{\mu \mu}=u_{\mu \mu}+\frac{1}{\gamma} P_{\lambda \sigma}(\mu \mu \mid \lambda \sigma)-1 / 2 P_{\lambda \sigma}(\mu \lambda \mid \mu \sigma)\right]$;
(80) $F_{\mu v}=\omega_{\Delta v}+\sum_{\lambda 0}^{A}\left[P_{\lambda 0}(\mu v \mid \lambda 0)-1 / 2 P_{\lambda \theta}(\mu \lambda \mid v 0) \quad\left\{\begin{array}{l}\mu \neq v \\ \phi_{\mu}, \phi_{v}, \sigma_{n} A\end{array}\right\}\right.$

$$
\sum_{B(+n)}\left(P_{B B}-Z_{B}\right) \gamma_{A B} \quad(\mu \text { on atom } A)
$$

of CNDO and INDO calculations on the same molecule, the reader is referred to appendix A.

The INDO theory has not been implemented for molecules containing atoms of the second row. Its use, therefore, is still limited to atoms H through F.

In spite of the above limitations the CNDO and INDO theories have been applied to a wide variety of problems. One qbvious area of concentration has been the determination of the equilibrium geometries of molecules through minimization of The total energy. Calculations of this sort involve systematic|variation of the molecular coordinates. Through application $\boldsymbol{F I}^{1}$ either of these theories equilibrium bond angles as wellos bond lengths may be determined.

CNDO/2 calculations of equilioum geometries have been reported for diatomic. $A B_{2}$, and $A b_{\text {molecules. }}{ }^{12}$ Comparison of theoretical results with experintal bond lengths and bond angles is, on the whole, encouraging. Pople and Gordon have continued such calculations and comperisons, using INDO theory and systematically studying molecules containing the atoms H, C, N, O, and F with one or two polyvarent atoms (C, N, or 0$)^{16}$ If A and E represent polyvalent ands and X and Y represent H and F, the categories of molecules they studied are $A X_{2}, A X Y, A X_{3} A X_{2} Y, A X_{4}, A X_{3} Y$, $A X_{2} Y_{2}, X A B, X_{2} A B, X A A X, X_{2} A E X, X_{2} A A X_{2}, X_{3} A E X, X_{3} A B X_{2}$, and $X_{3}^{A A X} X_{3}$. Their results also indicate that the INDO theory produces calculations which are for the most part in keeping with experimental values. ${ }^{16}$ A summary of their results with special emphasis on quantitative variance from experimental values may be found in

Poole and Beveridge, Approximate Molecular Orbital Theory (see footnote 4., pp. 97-109).

A second application of the CNDO and INDO theories is in the calculation of electronic charge distribution. The diagonal element $P_{\mu \mu}$ of the density matrix represents the electronic population of atomic orbital ϕ_{μ}. A summation of all the electronic populations centered on one atom yields the electronic population of that atom.
(82) $P_{A A}=\sum_{\mu}^{A} P_{\mu \mu}$

Dipole moment is a molecular property fiosely related to the electronic charge distribution. In the CNO and INDO approximations, dipole moment is considered to be the fum of two contributions, one from the net charges at the nuggar positions and one which is a hybridization term involving the displacement of the charge away from the center of the nucleus. ${ }^{1,2}$
(83) $\mu=\mu \mu_{\text {ching }}+\gamma \mu_{n y b}$
(84) $Y=2.556 \sum_{A} \triangle P_{A A} R_{A}$ debyes
(85) (M, Mo) $=-14.674 \sum_{A}^{*} J_{A}^{-1} P_{2 S_{A}} P_{2 P_{x A}}$ debyes In equation (84) $\Delta P_{R A}$ is the net atomic charge $\left(\bar{Z}_{A}-P_{A B}\right)$, and R_{A} is the position vector of nucleus A. In equation (85) J_{A} is the Slater orbital exponent of valence orbitals on atom A, and the asterisk indicates that the summation is restricted to atoms other than H.

Poole and Segal as well as Pople and Beveridge report CNDO/2 dipole moment calculations for $A B_{2}$ and $A B_{3}$ type molecules ${ }^{12,17}$ which correlate well with experimental values. They report also that

a comparison of CNDO and INDO calculations reveals that the inclusion of the one-centered exchange integral has little effect on dipole moment calculations. In all the above cases dipole moments were calculated for molecules with an equilibrium configuration as determined by CNDO or INDO theory.

Another completely different approach from the two discussed above utilizes standard bond angles and bond lengthsh assuming that they closely approximate true equilibrium ggonetries and can therefore give meaningful results for other rolecular properties. Pople and Gordon discuss this appropen and propose a set of standard bond lengths and bond anglo to be used in such calculations. 18

Molecular properties of larger moecules may be calculated in this manner, and Pople and Gordon have computed LCAO molecular orbitals, charge distributions, and dipole moments from standard geometries for many ongaic molecules. ${ }^{18}$ They have found that the agreement between experimental and calculated dipole moments is good, with few exceptions. One problem in their comparison, however, is Rat their assumed standard geometries sometimes differ from Rose determined by spectral data in a miccowave determinatron of dipole moment. Pople and Beveridge outline the findings of Pople and Gordon 19 summarizing their significance with respect to theories of electron displacement. Among the molecules discussed are simple nonpolar hydrocarbons, fluorine compounds, oxygen compounds, nitrogen compounds, and mixed compounds of nitrogen, oxygen and fluorine.

Further general applications involving INDO theory and

open-shell molecules include calculations of electron spinnuclear spin interactions, ${ }^{20}$ spin densities, hyperfine coupling constants, 20 and nuclear spin-nuclear spin interactions. ${ }^{21}$ These applications specifically refer to free radicals, radical cations, and radical ions - paramagnetic molecules - and only INDO theory as discussed above will yield tenable results due to its inclusion of the one-center exchange integral.

Other applications of the CNDO/2 theory include wide range of interesting problems. Several independent stwies of substituent effects have been reported. Examples area CNDO/2 calculation of substituent effects on localization a cNDO/2 study of the effect of the methyl group on the Charge distribution and relative stabilities of conjugated caronum ions, ${ }^{23}$ and a calculation of the inductive effect of the methyl group? Recent structural calculations using CNDO theor include calculations for a series of carbonium ions 25 for ingermediates and transition states in electrophilic substitution and calculations for p-benzoquinone ${ }^{27}$ as well as for trans - anc sif-dimides. ${ }^{28}$ Also, comparisons of spectral analyses and CNDO c@culations have been carried out by Sadlij and Kecki 29 and by to correlate the effect of substituents on charge distribution in fluorine molecular Orbitals with fluorine proton shifts in NMR spectra.

The above are only selected references to interesting applications of CNDO and INDO theory. Since their development less than ten years ago the two theories have been widely used. One common feature of many of the applications to this point, however, has been a prevalent inherent skepticism as to the quantitative

accuracy of the calculated results. Thus, often an author uses other experimental findings to corroborate CNDO or INDO calculations and to justify his choice of one of the two theories for his structural framework. A great deal of experimental work has therefore been involved with proving that structure, dipole moments, and other calculated properties do correlate well with experimental data. Such work first showed the inadequacies of the CNDO theory in certain situations and led to the 人evelopment of INDO theory.

In my opinion, one cannot emphasize englan that these are approximate molecular orbital theories ang fherefore cannot be expected to be perfectly in keeping wid experiment for every calculation. The theories themselves have areas in which improvement is possible. A study on possibility of improving the estimation of β parameters hak been reported? Further, specific aress of the theory have b) investigated resulting, for example, in a proposal for substitution of semiempirical coulomb integrals for those originy proposed. ${ }^{32}$ In the same study the authors also suggest the froductions of a new empirical parameter to differentiateresonance integrals between oorbitals and those between π orbfis.

Eecause of the approximate nature of the theories, use of data for qualitative rather than quantitative predictions seems to be theoretically more meaningful. With further improvement in the CNDO and INDO methods, quantitative use of calculations is likely to become more feasible. In their present form, however, both methods represent a significant advance over other less

sophisticated theories, specifically those dealing only with π electrons rather than with an entire valence set of basis functions.

A computer program designed for CNDO and INDO calculations was obtained from Dr. Paul A. Dobosh although it is also available through the Quantum Chemistry Program Exchange, Department of Chemistry, Indiana University, Eloomington, Indiana. In the following pages the features of the original program will be discussed, as well as the modifications necessary $\neq a$ apt the program to a National Cash Register Century 200 computer with a memory size of 64 K .

The program offers the user an option of selecting either the CNDO or INDO general theory for compleation and performs calculations for open or closed-shell Ntems. The CNDO/2 parameterization is used in all CNDO calcjations. The maximum size molecule that the program can accomdate is one with 35 atoms or 80 basis functions (or both). NI elements through cl may be included in the molecule if the CNDO method is chosen. If the INDO method is desired, onlyelements through F may be included in the molecule. INDO thegry is implemented in appropriate sections of the program by optional: INDO set of calculations which makes correctigns to matrix elements calculated by the CNDO method. In boen the CNDO and INDO options, the basis functions assigned to each atom correspond to the minimum basis set or valence orbitals of the atom.

The program is structured into subroutines, each of which performs one of the calculations required by the CNDO or INDO theory. The main program, which appears first, serves only to input the data, convert the coordinates from angstroms to atomic

units and call the subroutines necessary to complete the calculation. The "COMMON" statement of the Fortran language is used throughout the program to store information in a labeled section of the computer's memory; through use of this feature the information can be accessed by all subroutines, and the computations performed by one subroutine can be passed on to other independent parts of the program. For example, the statement"COMMON/ INFO/NA TOMS, CHARGE, MUITIP, AN(35), $C(35,3)$ " stgres the values of the number of atoms, the charge of the molecufe, the multiplicity, and the arrays of atomic numbers anp coordinates. At any point in the entire operation of the prgram this information will be located in a particular block of gemory known as "INFO" and can be accessed by any subroutine. Wáta calculated in subroutines but not stored in such a
when control is returned to the mbin program unless the subroutine is parameterized in some way.

In the original program the subroutine COEBFT serves to store the values of the coonicients needed in the calculations of the coulomb and overla integrals. The subroutine INTGRL accomplishes these computations through application of the methods described inthe theoretical section. INTGRL calls subroutines RELVEC, SS, HARMTR, and MA TOUT while SS calls subroutines AINTGS and BINTGS. From this it can be seen that a major portion of the program is involved with the calculation of the overlap and coulomb matrices. RELVEC serves to calculate the unit vector distance along an interatomic axis between pairs of basis functions, each pair of basis functions giving rise to an overlap matrix

element PAIRS (I,J). Each basis function is paired with all the other basis functions of the molecule; thus the overlap matrix for HF , with 5 basis functions, is 5×5. The function SS, called in the calculation of the non-zero matrix elements, computes the reduced overlap integral discussed in the theoretical section. Following computation, a rotation matrix calclilated by HARMTR transforms the integrals to a molecular basis, and the matrix $S_{\mu v}$ is stored in COMMON/ARRAYS/S.

One-center and two-center coulomb integrals 7 are subsequently computed in INTGRI, using, again, the reduced overlap integrals calculated by SS. These integrals are calcquted for pairs of atoms, rather than pai'rs of basis functions, and the matrix is therefore NATOMS X NATOMS in size, nere NATOMS represents the number of atoms.

Subroutine HUCKCL initiates an LCAO/SCF-type calculation. The diagonal elements $F_{\text {〒וル }}$ Of a Nuckel-like approximation to the Fock matrix are initially repsaced by the average of the ionization potential and electem affinity as described in section II. The non-diagonal elemen+S F_{μ} are estimated by $\int_{\mu_{\nu}}\left(\beta_{A}^{0}+\beta_{B}^{0}\right)$, where $S_{\mu v}$ is the overlap interral matrix calculated in INTGRL. The Fock matrix is diagRalized through use of subroutine EIGN; the eigenvectors thus calculated are used to compute the initial density matrix. This matrix is stored in CONMON/ARRAYS/B. At this point appropriate CNDO or INDO corrections are made to the core Hamiltonian matrix. (Note that the Fock matrix is originally assumed in HUCKCL to be equal to the core Hamiltonian matrix; because the density matrix is considered zero in this first

approximation, $F_{r}=H_{i, v}$ and $F_{\mu \mu}=H_{i^{\prime},}$)
Subroutine SCFCLO is called by the main program immediately after subroutine HUCKCI and is the subroutine in which selfconsistency is established through comparison of computed values of electronic energy. The initial density matrix as well as the core Hamiltonian computed in HUCKCL are used to calculate the Fock matrix (see equations (57). (58), and (59) in seqtion II). From this initial Fock matrix an initial electroncenergy is calculated (before diagonalization.) Diagonalizarion of the Fock matrix yields a new set of eigenvectors from which a new density matrix and a new Fock matrix are calcula ter. A new electronic energy value is computed after the format of each new Fock matrix, before diagonalization. This vafue is compared with the old energy value, and the cycle confued if the new energy value is not within 10^{-6} Hartrees ef the old energy value. The maximum number of iterations alded is 25 ; if this number of cycles is completed the progess will terminate regardless of whether the energy values pane converged or not. If the energy values do converge the Fat matrix is diagonalized once more and then printed under thorabel HARTREE-FOCK ENERGY MATRIX.

Subroutine CPR R T° computes the binding energy, the dipole moments, and the toval energy of the molecule. Subroutines SCFOUT and EIGOUT are printing routines, the first to print one of the arrays in COMMON/ARRAYS/ as designated by a parameter and the second to print eigenvalues of the array in SCFOUT.

The program in appendix B is a complete listing of the modified version of the original program. The reader is referred

to the comments (statements with a C in the far left-hand column and underlined in red) which are descriptive of the organization of each subroutine as described above. Further comments relating the theory to particular portions of the program are included beside appropriate statements.

Modification of the program to adapt it to our computer facilities seemed at first an easy task. Originally mitten for an IBM $360 / 65$ digital computer, the program had to be adapted to an NCR Century 200 digital computer. Eoth conputers use very similar versions of FULL FORTRAN IV, the differences being idiosyncrasies of the respective compilers. Thepreatures of the original program which required modificabon included the use of an IMPLICIT REAL * 8 statement, the file numbers on both WRITE and READ statements, and the se of the DFLOAT function. The IMPLICIT REAI * $8(A-H, O-2)$ extends the normal precision of all real variables to 8 decimal places. It is not available in NCR FULL FORTRAN IV but a DOUSNE PRECISION statement, which extends the normal precision from 6 to 12 significant figures, may be used instead. Eaavariable, nowever, must individually be declared DOUBLE PRERSION because no statement exists in NCR FULI FORTRAN IV Rrich will automatically apply to every real variable. Unless a real variable is expressly declared. DOUBIE PRECISION, it will be considered real and allotted onehalf as much memory as an equivalent double precision variable. The WRITE file number was changed from 6 to 3 and the READ file number from 5 to 1.

No DFLOAT function exists in NCR FUTI FORTRAN IV. The purpose of this function is to convert integer variables to float-

ing point variables in the event that mixed-mode arithmetic is required in a statement. The problem does not occur in NCR FULL FORTRAN IV because mixed-mode arithmetic is automatically performed; integer variables in mixed-mode expressions automatically become floating-point variables. In every use of the DFLOAT function, simply removing "DFLOAT" results in the correct NCR statement.

Adapting the program first for closed-shell/minecules only, we made the above changes and ran the computer frogram using data for hydrogen fluoride. After correcting some minor syntax errors, we obtained a successful compilatidrwith the message "PROGRAM EXCEEDS SIZE" as we had expected, The program in its original form with the above modificabons requires approximately 170.000 bytes of memory for the com memory alone, while the NCR Century 200 has only 64 K (actually 65,456) bytes of memory space available. The problem, thed, was one of reducing the amount of memory needed for COMMON br more than two-thirds.

In NCR FULL FORTRAN TXach double precision variable requires 8 bytes of memory space, an obvious way of reducing the memory size was to reduce the cize and number of the double precision arrays in COMMON. We therefore reduced the maximum number of atoms from thirty-five to ten and the maximum number of basis functions from eighty to twenty-five. This change reduced the size of COMMON/ ARRAYS/ from 19,200 to $1875, C O M N O N / I N F O /$ from 144 to $44, C O M N O N /$ $G A B /$ from 2000 to 875 , and COMMON/TNO1/ from 188 to 58. As each of the variables reduced was a double precision array, a total of 131,840 bytes of memory was released by these changes. Further, the arrays $G 1(18), F 2(18), \operatorname{EETAO}(18)$, and ENEG(18,3) in subroutine

HUCKCL were originally declared DOUBLE PRECISION. The values assigned to elements of these arrays, however, never require more than 6 decimal places of precision. Eecause of the NCR's capacity to perform mixed-mode arithmetic, we were able to declare all these arrays single precision and to save 432 bytes of memory. COMMON/ARRAYS/ serves in the original program as a storage place for the Z and Y coefficients used in calculation of the reduced overlap integrals. In COEEFT a total of $7 / 52$ values were input, of which 678 were zero. 9135 y value. were input, of which 8811 were zero. All Y and Z values kere declared double precision. From this it seemed obvious that a majority of the storage space required by COEFFT retainedzero values. In order to reduce further the memory required of the program, we therefore removed the subroutine COEFFT entirey and devised a method of reading in as data the non-zero Z and Y coefficients.

In this method two paralle Arrays are constructed for both Z and Y values. The first array consists of the array element numbers of non-zero Z value (or of non-zero Y values.) This array is called NZZ (or NZY) Meaning non-zero Z (or non-zero Y). The second parallel array $2 Z Z V$ (or $N Z Y V$), non-zero Z value (or nonzero Y value) is consed of the actual values corresponding to the array element numbers in $N Z Z$ and $N Z Y$. For example, if $Z(1)$ was originally input in COEFFT as $Z(1)=64$, in the modified version of the program $N Z Z(1)=1$ and $N Z Z V(1)=64$. Cards from the original program are used for inputting the Z and Y values. The values are read and stored in the MAIN segment of the program. NZZ, NZZY, NZY, and NZYV are all allotted to COMMON/ARRAYS/ to be accessible to other parts of the program.

In function $S S$ the value of Z or of Y to be used in computation was originally determined by an array element number which was a function of the variables of two "DO" loops. Thus, $X=X+$ $\underline{Z}(I+1, I) * A(I+1) * B(N N I 1) / 2 . D 0$ or $X=X+Y(I+1, J+1, L) * A(I+1)$ *B(IIII). Using the rule for array element succession in FULL FORTRAN IV, we converted these into linear array element numbers. According to this rule, if Z is an array of size $17 \times 45, Z(I+1, L)$ is equivalent to $Z(I+1+17 \%(1-1))$. If Y is a $9 \times 8 \times 203$ array, $Y(I+1, J+1, L)$ is equivqlent to $Y\left(I+1+9 * J+5^{*}(I-1) \approx\right.$ A systematic comparison of the desired Z or Y array element numbers with those stored in NZZ or NZY reveals whether the deprred element is one of the non-zero elements. If so, Z is assianed ve value of the corresponding NZZV or NZZY element. If not, it Remains zero.

This modification requries the adition of $N 22(87)$, NZ2V(87), (NZY (224), and NZYV (224) to COMMON/ARRAYS/ but allows the reduction in the number of basis functions without loss of memory space required for storage of Y or 2 coefficients. The process undoubtedly involves more amputer time, but in our case free memory space was the alternative to efficiency that we preferred.

In spite of the Bove modifications the program failed to run properly. Memor was approximately at the 64 K limit and did not seem to be the oroblem. For this reason we attempted to use a trace statement to get a printout of all variable values throughout the program but found that this feature of NCR FULE FORTRAN IV had not been implemented in our compiler. Inserting write statements in appropriate spots, we saw that the program was failing somewhere in subroutine INTGRI due to what the computer termed

an exponential overflow.
For several months we investigated this problem, approaching it from as many different angles as possible. One such approach revealed by accident an obvious error in the computer rather than in our program. We had considered the possibility that the complicated overlay of the program was causing the problem and decided to structure the program into two independent out LINKed programs (using the IINK feature of FORTRAN), tho First containing subroutine INTGRI and the subroutines used FINTGRL and the second containing the other subroutines. We found, using this IINK procedure, that the output of the link and non-linked programs were not equivalent but that neithe program worked! We concluded that the memory overlay was not the problem but rather some inherent computer error. We sent caes of both programs to National Cash Register headquarters in Dayton, Onio, and after several weeks of testing they ofirmed that an error in the floating-point hardware of oun computer was preventing the program from running correctly.

After correction of the problem we input data for formaldehyde, $\mathrm{CH}_{2} \mathrm{O}$, and concentrated on the first part of the program which calculates conomb and overlap integrals. The matrices were calculated by the program but additional output from test write statements revealed another computer error. The 1 quantum numbers were appearing consistently as negative values. It was obvious since these are all positive integers that at least one calculation was incorrect. We carried through computations by hand and found no problem, concluding again that there was a software or hardware error. Subsequent test runs in Dayton showed that the

error was reproducible on other NCR Century 200 computers and that it thus was not a localized problem of the computer available to Sweet Eriar. In the process of investigating this error, problems in the exponentiation procedure and in the double precision hardware were found. These, however, were not the causes for assignment of negative values to the 1 quantum number. This remains unsolved, though accidentally we discovered a way topvercome it.

In the calculation of $\operatorname{PAIRS}(I, J)$ the non-zerpoverlap matrix elements computed in INTGRL, a rather complex mafrematical statement is employed.
(1) $\operatorname{PAIRS}(I, J)=\operatorname{DSQRT}((\operatorname{MU}(A N K) * R) * 2 * \operatorname{NC}(A N K+1) *(\operatorname{NU}(A N L)$ *R) ** $2 * N C(A N L+1) / \operatorname{FACT}(2 * N C(A N L))) *(-1, \operatorname{O}) * * \operatorname{LC}(J)+M C(J)) * \operatorname{SS}(N C(A N K)$, $\operatorname{LC}(I), \operatorname{MC}(I), \operatorname{NC}(A N L), \operatorname{LC}(J), \operatorname{MU}(A N K) * \operatorname{MU}(A N L) * R)$ Suspecting that the argument of the $\mathbb{S Q R T}$ function was becoming negative we broke this statement down as follows:
(2) $N E W V=((M U(A N K) * R) * 2 * N C(A N K)+1) *(M U(A N L) * R) * *(2(N C$ $(A N L+1) / \operatorname{FACT}(2 * N C(A N L))))$
(3) NENS $=\operatorname{SS}(N C M K), \operatorname{LC}(I), M C(I), N C(A N L), \operatorname{LC}(J)$, $\operatorname{MU}(A N K) * R, \quad \operatorname{MU}(A N L * R))$
(4) PAIRS(IQ $=\operatorname{DSQRT}($ NEWV $) *(-1 . D 0) * *(.(\operatorname{LC}(J)+M C(J)) * N E W S$ In addition we adde@ following loop:

If (NEWV LE. O) GO TO 135
135 DSQRT (NEWV) $=0$
WRITE (3, 145) NEWV
The above statements were placed before the final PAIRS(I,J) statement so that the possibility of extracting the square root of a negative number was eliminated. After the floating-point hardware

was corrected, a printout for $H F$ was obtained which did not assign a negative value to 1 . In a subsequent run on formaldehyde, the original PAIRS (I, J) statement was restored, resulting in the original assignment or calculation error. Again breaking up PAIRS (I, J) as described, we were able to obtain a successful printout for the first part of the program - one which correlated almost exactly with a good run on formaldehyde using the original computer program adapted to a CDC 5400 computer at whe University of Virginia.

The second half of the program was testgd Independently of the first by inputting the correct overlap quicoulomb matrices and making other necessary modifications. Frintout for this half of the program using data for formaldence corresponded to the correct printout on the CDC 6400 .

The two programs were then rdcompiled into one and run, using double precision variables and putting data for formaldehyde. This trial run produced correck results.

Once the program was maning properly a further modification was made to increase the Xumber of allowed basis functions from 25 to 31. COMMON/ARRASX originally allotted enough memory space for 3 arrays with densions equal to the number of basis functions squared. Inspection revealed that the third of these arrays was used only in calculations for open-shell molecules; since this option is not a feature of the modified program this array was eliminated, resulting in enough free memory space to increase the maximum number of basis functions to 31. The modified program in its final form can perform CNDO and INDO calculations on closed-shell molecules with a maximum size

of 10 atoms and 31 basis functions. The CNDO option may be chosen for molecules containing atoms through Cl and the INDO option for molecules with atoms through F. The language in which the program is written is NCR FUIL FORTRAN IV, and the total memory required is approximately 65,000 bytes. Output from the program includes the overlap matrix, the coulomb matrix, the density matrix, the Hartree-Fock energy matrix, the total, the electronic and the bonding energies of the molecule as well/as the total dipole moment and contributions from components.

In conclusion, in the process of modifying the program my own personal attitude about computer calcufrions was reversed from one of complete trust to one of innate skepticism; when errors appeared in the program throughout the year they seemed to be due chiefly to the inadequacies of the computer rather than logical or syntax problems on my bart. One definite finding of the project is that the NCR XPNTURY 200 computer with a FULL FORTRAN IV compiler is not the best machine available to nandle programs of the size and complexity of the one with which we were dealing.

Erownlee and Taft have used the CNDO/2 method to study substituted fluoroacteylenes and trans-substituted fluoroethylenes. ${ }^{30}$ With the recent extension of CNDO/2 theory to include atoms of the second row of the periodic table, ${ }^{14}$ it is possible to compare results such as those obtained by Brownlee and Taft to results using substituted chloroacetylenes and substituted chloroethylenes. Such a comparison can yield at Feast a qualitative measure of the relative electronic effector fluorine and chlorine.

Though fluorine and chlorine are bot@in the halogen series, the difference between the two is greato than between succeeding heavier halogens. Fluorine is a smalfer atom, having a covalent radius of $0.72 \dot{A}$, while chlorine $h \leqslant \frac{\text { a covalent radius of } 1.00 ~}{\mathrm{~A}}$. The valence shell configurations the two are $2 s^{2} 2 p^{5}$ and $3 s^{2}$ $3 p^{5}$ respectively. Fluorine isf most electronegative of all the elements, having an electronpstivity of 3.95 on the Pauling scale, and chlorine's electronegativity is 3.03. Related to electronegativity is the inductive fect parameter $\sigma_{i} 33$ which is 0.52 for F and 0.47 for Cl . The resonance effect parameter $\sigma_{\hbar} 34$, measuring the tendency of a soostituent to delocalize π electrons, is -0.45 for F and -0.24 for $C l$.

The above characteristics of fluorine and chlorine lead to some interesting differences in the bonding properties of the two atoms. 3ecause of fluorine's smaller size, it has a higher charge density ;han does chlorine. Such a high charge density results in a large easure of repulsion among the lone-pair electrons on the atom.

π bond formation reduces some of the charge density due to delocalization, and thus fluorine has a tendency to contribute to π bonds. Chlorine, on the other hand, has a much more dispersed electron population than does fluorine. Its relative contribution to π bonding is therefore less.

A last significant difference mentioned between the two atoms is their electronic configuration. Though each has 2 electrons in the valence s orbitals and 5 in the valence p orditals, the Cl atom has 5 empty 3 d orbitals which contribute some way to covalent bonding.

From these general differences one maymake specific predictions about the relative effects fluorine and chlorine on electron distribution. Fluorine's gheater electronegativity should be evident in a comparison of the olectron densities at specified atoms in fluoro- and chloro- compounds.

Figure 1.

Referring to figure ${ }^{4}$, the excess σ electron density at F in molecule A shoul be greater than that at Cl in molecule B, and the correspond $\mathcal{G}^{\circ} \sigma$ electron deficit at C_{2} in molecule A should be greater than that at C_{2} in molecule B. The inductive effects of the two atoms fluorine and chlorine are likely to be observable at the carbon bonded to the substituent, X. Although quantitatively the σ electron density at the substituent carbon C_{1} reflects to a large extent the inductive effect of the particular substituent, the greater electronegativity of fluorine

should result in a smaller absolute electron density at C_{1} in molecule A than at C_{1} in molecule E.

With respect to π electron distribution, one would expect the total π density at the two ethylene carbons (hereafter referred to as $\sum_{c} q_{\pi}$) to be less in chloro- compounds than in corresponding fluoro- compounds. The concentration of π electrons at C_{2} in molecule A (the carbon bonded to fluorine) shousd be greater than at C_{2} in molecule B (the carbon bonded to cy

To test these predictions a CNDO/2 calculation was done on 6 monosubstituted ethylenes and then subsqquently on 4 of the 6 co:responding fluoro- and chloro- compourps. Standard geometries were assumed using the best values from the literature. ${ }^{35}$ Though not physically correct, the assumption fas made that the substitution of a fluorine or chlorine group does not change appreciably the other bond lengths or bond angles of the molecule. Justification for such an assumption lies in comparative approach being used. The same standard geometries wore used for chloro- and fluorocompounds - which seems mand consistent than varying bond lengths or bond angles based on Rfferent experimental values. Also, experimental values were no available for all of the molecules for which calculations fre made. The convention was used in which the double or triple bond is along the x axis with the z axis perpendicular to the molecular plane. In this way π electron density can be directly obtained from the charge density matrix, the diagonal $p_{z} p_{z}$ elements representing π contributions of atomic basis functions to the atoms on which they are centered. olectron density can be calculated and is the sum of the contributions of the diagonal s, p_{x} and p_{y} elements. The calculated x, y, and z

coordinates are given in appendix C.
The substituents we originally hoped to consider were F, $\mathrm{Cl}, \mathrm{CHO}, \mathrm{CN}, \mathrm{NO}_{2}$, and CH_{3}. These represented a wide range within the limitations of the modified CNDO program. We were unable to complete calculations for all the molecules, however.

In the course of investigating this particular problem we discovered another inadequacy of the NCR Century 200 epmputer. A total of 44 molecules were input (NRUNS=44): after $1 \frac{1}{2}$ hours the run was aborted because the operators thought the program was in an infinite loop. In fact, it was in the process of executing computation for one of the more complicated rrolecules. We therefore broke the data down into two decks an hoped in this way to reduce the length of each job. One ox the data decks was run for 9 hours and 45 minutes, after whin only $3 / 4$ of the data had been processed. Calculations were hompleted for only 12 molecules during the two runs; subsequent mave results for 3 more molecules. My conclusions, therefore, must be based on findings with respect to this limited numer of substituted ethylenes. Time prevented acquisition of fata for the remainder of the ethylenes or the acetylenes.

Tables I, II, a III contain excess σ electron densities at specified atoms in monosubstituted ethylenes, substituted fluoroethylenes, and substituted chloroethylenes, respectively. Excess electron density was computed by subtracting the electron density of the appropriate undispersed orbitals from the calculated electron density.

$$
{ }_{H^{\prime}}^{\prime \prime} c_{2}=c_{1}^{\prime}{ }_{x}^{\prime}
$$

 Hereafter CHO* and CHO** refer to the following/configurations:

CHO *

Table II

$x-x=$ pensirt Ar	CHO
C_{10}	$.0331^{\mathrm{a}}$-.0277
C_{20}	$-.1606^{\text {a }}$
F_{σ}	$.2318^{\mathrm{b}}$. 2330
a q-3.000	b 02.5 .000

$\frac{\text { Table III, }}{0} \mathrm{x}=\mathrm{Electron}$ Densities of Substituted Chloroethylenes

Tables I - III are interesting not only for the information they contain concerning the relative electronic effects of fluorine and chlorine, but also concerning the effects of substituents on the inductive abilities of the two atoms. It is useful to note, for example, that in table II the σ electron density at F is almost .02 smaller for NO_{2} substituted fluoroethylene than for any other substituent. This is an indication of the competition between NO_{2} and F for electrons, and it also points out ${ }^{\wedge} \mathrm{NO}_{2}$ is the most electronegative of any of the substituepts. Similarly, in table III, the electron density at $C l$ in the nitro- substituted molecule is at least .04 smaller than for ofrer substituents. The fact that the difference is less in the case of the fluoro-compounds than in the case of the chlorine compounds is indicative of the fact that chlorine is less able compete with NO_{2} for σ electrons; it is less electronegative.

Table IV was tabulated frot fables I - III and represents a comparison of the data of the whree.

Table IV. A Comparison © Electron Densities in Substituted Fluoroethylens and Chloroethylenes

	$c_{1} \cdots$	$C \geq$	Fr	Cl
$\begin{aligned} & \text { F, СнO* } \\ & \text { c1, СнO* } \\ & \hline \end{aligned}$	$.0331 \bigcirc$	$\begin{array}{r} -.1606 \\ -.0296 \\ \hline \end{array}$	$\begin{array}{r}.2330 \\ \hline---1\end{array}$	1270
F, СНО** 21, CHO**	.0277 .0057	-.1652 -.0253	. 2369	1338
$\begin{aligned} & \mathrm{P}, \mathrm{NO}_{2} \\ & \mathrm{IL}_{2} \mathrm{NO}_{2} \\ & \hline \end{aligned}$	-.0598 -.0772	$\begin{array}{r} -.1804 \\ -.0252 \\ \hline \end{array}$. 2106	--- .0815
$\begin{aligned} & \mathrm{CN} \\ & 1, \mathrm{CN} \\ & \hline \end{aligned}$	-.0140 -.0318	-.1846 -.0424	. 2321	----

Table IV is in keeping with theoretical expectations. The greater inductive effect of fluorine is evident in every case considered. For both of the geometrical configurations of $\mathrm{CHO}-\mathrm{sub}-$ stituted molecules, there is an excess of electron density at the carbon bonded to the substituent: the excess is larger for F than for Cl. This excess represents a redistribution of o electrons from the substituent to C_{1} and reflects the successful competition of fluorine and chlorine for part of the σ electron density of the substituent. This can be illustrated through the following schematic diagram, using the CHO^{*} configuraltion:

Figure 2.

(Note that in figure 1δ refersto charge rather than electron population. The difference lie only in the sign; an excess electron density results in an excess negative charge. Also, | $15 \delta \mid$ | | 5|.)

The substituents NO_{2} and CN also illustrate the fact that fluorine has a greatenductive effect than chlorine; the substituents however, are both mare electronegative than CHO as indicated in figure 3 using the NO_{2} group as an example.

Figure 3.

The inductive effects as calculated by CNDO/2 theory are thus in keeping with those predicted. Fluorine's greater electronegativity

is evident in calculations for pairs of molecules with all 4 substituents, thougn it is interesting to note the variations in charge distributions that occur because of the electronegativity of the substituent. The relative electronegativities of the substituents as calculated are $\mathrm{COH}<\mathrm{CN}<\mathrm{NO}_{2}$ which corresponds to the inductive substituent constant order of $0.31<0.56<0.63$ for these substituents, resepctively. ${ }^{36}$

Tables V, VI, and VII contain excess π electron densities for the series of molecules being studied.

Table V. π Electron Densities of Monosubstituted Ethylenes

$\frac{\text { Tarle VII. }}{\pi} \pi \quad \pi$ Electron Densitites of Substituted Chloroethylenes

	H	CHO*	CHO**	NO_{2}	CN
C.r	$.0408^{2}$. 0488	. 0596	. 0916	. 0420
$\mathrm{C}_{2 \pi}$	-. $0151^{\text {a }}$	-. 0617	-. 0787	-. 0500	-. 0309
$\mathrm{Cl}_{2 \mathrm{fa}}$	$-.0257^{\text {b }}$	-. 0337	-. 0367	-. 02×8	-. 0305

Table VIII is a comparative representath of the total π densities at the ethylene carbons of the moncules being studied as well as the π electron densities at indual atoms in the molecule.

Table yIII. A Comparison of π Elkctron Densities in Substituted Fluoroethylenes and ohloroethylenes

Table VIII indicates that the π electron distribution at the ethylene carbons is consistently greater for fluoro- com-

pounds than for chloro- compounds. For each pair of molecules being compared, the deficit of π electrons at fluorine is greater than the deficit at chlorine, indicating that fluorine is making a larger contribution to π bonding than chlorine. The total excess π electron density at the ethylene carbons is also greater for fluoroethylenes than for chloroethylenes.

The actual distribution of the π electrons is an interesting problem. Although one would expect that the π deasity at C_{2} (bonded to fluorine or chlorine) would be greater than at C_{1}. the reverse is consistently true. Apparently the π electrons contributed by both fluorine and chlorine in their respective systems appear at C_{1}. The explanation for this likely llys in the form of the molecular orbitals, but a detailed analysi. is an area for further investigation.

Thus, the calculated σ and distributions of substituted fluoro- and chloro- compounds splect the greater inductive and resonance effects of fluorine than chlorine. A definite problem with the framework of this etudy, however, is the assumption of fixed standard geometrieg regardless of substitution of the fluoroor chloro- group. As mentioned previously, the data obtained should be used only in a galitative study rather than any sort of quantitative assessment of the trends discovered. Whether these trends would be enhanced or reduced by use of actual equilbrium geometries for the given molecules is a problem for further study.

Likewise, the use of only four different sets of molecules from which to draw general conclusions is undesirable. This factor, however, was beyond our control: similar runs for other molecules using the same computer program and the coordinates in appendix

C may reveal other important results.
The computer program would probably yield more accurate density values if it were modified to achieve self-consistency using an electron density criterion rather than the electronic energy convergence. In the case of larger molecules, in particular, there was some difficulty in obtaining proper convergence using electronic energy. By focusing on one of the elements of the density matrix or on a standard deviation of the diagonal elements, for example, this change could be instituted.

In spite of these limitations, in the tree substituted ethylene investigated the qualitative trends which the data revealed are in keeping with predictions. Because 4) the assumptions of standard geometries, the limited data avila 100° and the use of electronic energy as a measure of self-consistehcy rather than charge density, these conclusions must remain, ag best, qualitative. Nevertheless, the trends discussed above axpeared in each set of data, with no exception.

The $C N D$ ami indo methods successfully extend other more a゙ットuxim：te molecular orbital theories through the entire valence set of electrons．Based on the ZDO approximation，both methods rely on a self－consistent field method using the LCAO approach． The INDO theory，however，retains one－center monotomic differen－ tial overlap in order to improve correlation of the oretical and experimental data for open－shell molecules．

When applied to a series of simple molezutes（ $A B, A B_{2}, A B_{3}$ ， for example），the CNDO／2 parameterization has been found to be more successful than the CNDO／1 parameter $<$ ation in that calcu－ lated bond lengths and dissociation convents are more in keeping with those experimentally determinedo The main difference between the latter and the former is the former＇s neglect of the penetra－ tion integral．This modification was found to improve results con－ siderably．

CNDO／2 theory has recen $\nmid y$ been modified to include atoms through Cl in the periodic fable．This involves the estimation of orbital forms for eabr of the 5 3d orbitals and the inclusion of a specified empiracal constant in the estimation of the reso－ nance integral $\beta_{A B}^{\circ}$ ．An important area for investigation is the fur－ ther extension of this theory to the transition elements．Highly symmetric transition metal crystals，could，through group theory， be studied without requiring excessive numbers of basis functions．

Implementation of the CNDO and INDO theories was accomplished through adaptation of a computer program to the NCR Century 200

computer to which Sweet Briar has access. The problems involved included reducing the large amount of memory space originally required and changing minor syntax idiosyncrasies in the original version of the program. These changes did not result in successful operation but rather led to the discovery of several malfunctions of the computer. We were able to pinpoint and overcome these errors and obtain printouts for $\mathrm{CH}_{2} \mathrm{O}$ which reproduced similar runs on another machine.

Having adapted the program, we were able frapply it to a simple problem, an investigation of the effects of F and $C l$ on σ and π electron densities in substituteafluoro- and chloroethylenes. Excessive computer time was Fquired to perform calculations, nine molecules being executesin 9 hours and 45 minutes. For this reason the experiment had be based on only a part of the molecules we had hoped to run.

Data from these calculatines was in keeping with theoretical predictions in every case stadied. Fluorine has greater inductive and resonance effects, and this was clearly demonstrated by the data. An area for study, howewr, is the actual π distribution at each carbon

The problems enQuntered in structuring even a simple experiment such as the we initiated indicate that data should be used to determine Qualitative rather than quantitative trends. The CNDO and INDO theories themselves are approximations of other approximate molecular orbital theories, and one should proceed with care when attempting to make quantitative evaluations based on data obtained using these theories. They are, however, important in the development of approximate molecular orbital theories,

representing two of the most sophisticated and useful methods recently devised. Though at this stage they are still being tested, their application to specific problems is rapidly becoming more widespread; the results of such studies seem very encouraging and suggest a variety of other possible uses of these theories in the future.

Appendix A contains a CNDO and an INDO calculation for formaldehyde, $\mathrm{CH}_{2} \mathrm{O}$. The two indicate that the differences between the methods result in only small variations in the core Hamiltonian, Hartree-Fock and density matrices. These variations arise from the addition, at several points in the program, of INDO corrections to CNDO matrices. Eecrese the INDO method includes the one-center monotomic diferential overlap terms, the INDO calculations probably moreclosely approximate the true values than do the CNDO calcuations.

TRIAL RUN OF FORVALDEHYDE CNOO CLSD

4 ATOMS CHARSE $=0$ MULTIPLICITY $=1$

6	0.0000000	0.0000000	0.0000000
8	1.2200000	0.0000000	0.0000000
1	-0.5400000	0.9350000	0.0000000
1	-0.5400000	-0.9350000	0.0000000

1	2	3	4	5	6	7	8
1.0000	0.0000	0.0000	0.0000	0.3734	-0.3070	0.0000	0.0000
0.0000	1.0300	0.0000	0.0000	0.4580	-0.3056	0.0000	0.0000
0.0000	0.0500	1.0000	0.0000	0.0000	0.0000	0.2146	0.0000
0.0000	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.2146
0.3734	0.4580	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000
-0.3070	-0.3J56	0.0000	0.0000	0.0000	1.0000	0.0000	0.0000
0.0000	0.0500	c. 2146	0.0000	0.0000	0.0000	1.0000	0.0000
0.0000	0.0000	0.0000	0. 2146	0.0000	0.0000	0.0000	1.0000
0.52 .46	-0.2459	0.4257	0.0000	0.0841	-0.0754	0.0401	0.0000
0.5246	-0.2459	-0.4257	0.0000	0.0841	-0.0754	0.0401	0.0000

INTEGRAL MATRIX

overlap integral matrix

ELECTRONIC EVERGY
444.5310129367

ENERGY SATISFIED
REE-FOCK ENERGY YATRIX
Contimice on foclowing

ILLUES AND EIGENVECTORS CONTMHED ON FOCOWING PAGE

IALUESW- - 1.6123
 $C \quad \begin{array}{rr}P X & -0.29: 2 \\ C Y & 0.0020 \\ P Z & -0.0020\end{array}$

hartree-fock engrgy matrix

ITY MATRIX CONTINURD ON FOCLOWING PAGE

TOTAL ENERGY $=\quad-26.8312278536$

BII:ING ENERSY $=\quad-1.30 .8978700$
3.7892

$$
\begin{aligned}
& 3.7892 \\
& 6.1880 \\
& 1.0114 \\
& 1.0114
\end{aligned}
$$

+	3.7892
	6.1880
+	1.0114
+	1.0114

DENSITY	MATRix	
8	9	10
0.0000	0.5784	0.5784
-0.0000	-0.3972	-0.3972
-0.0000	0.6785	-0.6785
0.9872	0.0000	-0.0000
-0.0000	0.0124	0.0124
0.0000	0.0411	0.0411
-0.0000	0.1761	0.1761
1.1595	-0.0000	0.0500
0.0000	1.0114	-0.1197
0.0000	-0.1137	1.0114

TRIAL PUN OF FJRYALDEHYDE
INこO CLEC
4 ATOME CHARSE $=0$ MIJLTIPLICITY $=1$
6
8
1
1
$\begin{array}{rr}C .0 C 00000 & 0.0000000 \\ 1.2200000 & 0.0000000 \\ -0.5400000 & 0.9350000 \\ -0.5400000 & -0.9350000\end{array}$
こ. 2000000
0.0000000
0.0000000
0.0000000

COULOMB INTEGRAL MATRIX

1	0.5903	0.4101	0.4369	0.4369
2	0.4101	0.8265	0.2650	0.2650
3	0.4369	0.2550	0.7500	0.280
4	0.4369	0.2550	0.2810	0.7500

IND CORRECTIONS TO THE CNDO ELEMENTS HAVE BEEN MADE FOR THE UNDERLINED ELEMENTS.

ELECTRONIC ENERGY $\quad .43 .5275700233$ (INOO-CNDO) =

ELECTHONI二 ENERGY $\quad 43.5348565925$

OVERLAP INTEGRAL MATRIX

O_{p}

ELECTRONIこ EVERGY

ELECTRONIC ミVERGY

ELECTRONIC ENERGY

ELECTRONIC ENERGY ENERGY SATISFIED

TREE-FOCK ENERGY MATRIX
-43.5367412972
-43.5368270584
-43.5368475495
-43.5368541937
-43.5368536591

HARTREE FOCK ENERGY MATRIX

8	9	10
0.0000	-0.4158	-0.4158
. 0.0000	9.2218	0.2218
. 0.0000	-0.38 08	0.3808
-0.4064	0.0000	-0.0000
0.0000	-0.0633	-0.0533
-0.0000	0.0471	0.0471
0.0000	-0.0043	0.0043
-0.3331	0.0 .0000	0.0000
. 0.0000	-0.3145	-0.0341
0.0000	- 3.0341	-0.3145
Eig enva	Les AND	16 En
0.2317	0.3411	
8	9	
-0.6405	-0.0000	-2185
0.1820	- 0.0020	0.7286
-0.0000	0.7400	0.0000
0.0000	0.0000	0.0500
0.0843	0.0000	-0.3306
-0.2136	- 0.9000	0.5193
0.0000	-. 2.2096	-0.0000
-0.0000	-0.0000	-0.0500
0.5019	-0.4519	0.1456
0.5019	0.4519	0.1456

BEISITY MATFIX CONTINCLEO ON ROClOWING PAGE

TOTAL ENFRGY $=-25.7370685760$

EINDING ENERミY= 3.6738 6.2387 1.045 ? 1.0452
-1. 23256881925

0

DENSITY MATRIX

$8 \quad 9 \quad 10$
$0.0000 \quad 0.5793 \quad 0.5793$
$-0.0000-0.3949 \quad 0.2949$
$0.0000 \quad 0.6638 \quad 0.6588$
$0.9818 \quad 0.0500 \quad 0.0200$
$\begin{array}{rrr}0.0000 & 0.0117 & 0.0117 \\ .0 .0000 & 0.0632 & 0.0632 \\ 0.0000 & 0.1895 & 0.1995 \\ 1.1901 & 0.0000 & =0.0000\end{array}$
$0.0000 \quad 1.0452 \quad 0.1378$
$-0.0000 \quad-0.1378 \quad 1.0452$

or

Appendix B contains the modified version of the CNDO-INDO computer program discussed in Section III of this paper. The data which must be input includes the Z and Y coefficients, the number of molecules which are to be executed during each run, the CNDO or INDO option desired, that the molecule has a closedshell (only closed-shell molecules can be accommodayed by the program), the number of atoms in the molecule, its charge, multiplicity, and X, Y, and Z coordinates with reepet to the coordinate system chosen for the molecule. The detca is input in the following way:

CARDS 1-87-NZZ and NZZV (Fenmat (8X,I3,2X,I6))
CARDS 88-311 - NZY and NZM (Format (8X,I4,2X,I6))
CARD 312 NRUNS (Format KI2)
CARD 313 - An identifedion card with any format
CARD 314 - OPTION (wavefunction option) and OPNCLO
(The keT words are CNDO or INDO and CLSD.
The format is (A4,1X,A4)
CARD 315 - NATRNS, CHARGE, MULTIP (Format (3I4)
CARDS 316 - Rtomic number, X coordinate, Y coordinate,
and 2 coordinate - 1 card/atom
The format is (I4,3(3X,F12.7))

PACK NO． 067766
INDO FORT／FN CN：N NN 2B1 554 SZUPCHIJRCH こHOOOJOつ
AUTHORK UPCHURCH
01001 P1108001
03622 PO1 136

S 03622 P01136 060

000012
000020
000030
00000040
000050
000.260

000070
000082
000050
000100
000110
0001 ？ 0
000130
000140
000150
000160
030170
000180
000190
000200
つ0つこ10
000220
000？30
000240
0つ0～テ
000260
000270
000280
000290
000300
200310
000320
000330
000340
000350
000350
000370
000380
00．0390
000400
$00.04: 0$
000420
つつ0430
つつつ 4 4 J
000450
000460
000470

JRYAT 5 K, 4GHTHIS PROGRAM DOES NOT DO IVJO CA-こJ_ATIONS FOR, 000480 5:H MOLECULES CONTAINING ELEMENTS HIGHER THAV F-JORINE) OO0450
TOP

JNTINUE
JNTINUE
JNTINUE
AbL INTGRL
ALL HUCKCL
AbL SCFCLO
$A L L$ CPRINT
JNTINUE
כ TO 100
ontinue
JRMAT (Iट)
JRMAT (10A4)
JRMAT (1H1,5X,20A4)
JRMAT (A4, 1X,A4)
JRMAT $(5 X, A 4,1 X, A 4)$
JRMAT (3I4)
JRMAT(I4,3(3x,F12.7))
JRMAT $(8 x, 13,2 x, 16)$
JRMAT ($8 \mathrm{X}, \mathrm{I} 4,2 \mathrm{X}, \mathrm{I} 5$)
ALL EXIT
IOP
IOP
vo

030500 020510 000520 00053 J
 000550 000560 000570 000580 000530 000500 000510 000520 000530 000640 000650 000650 $000 \div 70$ 000680 020690 000700 000710 000720 000730

/ ALLOCATION

1 ALLOCATION
TTOMS 00004 CHARE 00008 MULTI? OOOOC AN 00124 N
/ allocation
$\therefore B$
1 ALLOCATION
/ ALLOCATION
$\begin{array}{lll} & 00028 \mathrm{U} & 00044 \mathrm{ULIM}\end{array} \quad$ OOOEC LLIM

／ALLOCATION

DR.R

```
```

60 I={,NATOMS

```
```

```
```

60 I={,NATOMS

```
```

$I M(I)=N+1$
${ }^{1}($ AN(I).LT.11) GO TO 20
: N+9
: II)=AN(I)-10
TO 50

- (ANII)•LT•ड GO TO 40
$: N+4$
$:(I)=A N(I)=2$
TO 50
$: N+1$
$:(I)=A N(I)$
IVTINUE
IM(I) $=^{-} N$
INTINUE
IL U ARRAY-- -U (J) IDENTFFRSTHE ATOM TO WHICH ORZITAL J IS
TACHED E.G. ORSITAL 3? ATRACHEO TO ATOM 7, ETC.
$70 \mathrm{~K}=1$, NATOMS

$(1)=1 \cdot 200$
5ว
$(1)=1 \quad 001580$
コー560
$(2)=$?
3つ: 59コ
$80 \quad I=3,10$
021500
$(I)=?$
00:510
(I) $=\cdot 32500 *(I=1)$
90 (1) 02152コ
90 I=11,18
031530
$(I)=3$
00:640
(I) $=(.6500 \times(I)-4.95001 / 3.00$

$(1)=0$
$(2)=1$
$(3)=1$
（4）$=1$
$(5)=2$
（6）$=2$
（7）$=2$
$(8)=2$
（9）$=2$
$(1)=0$
（2）＝1
（3）$=-1$
（4）＝0
$(5)=0$
$(6)=1$
$(7)=-1$
（8）＝2
（9）$=-2$
：P THRU PAIRS OF ATOMS
$320 \mathrm{~K}=1$ ，VATOMS
$320 L=K$, VATOMS
$100 \quad I=1,3$
$I)=C(K, I)$
$(I)=C(L, I)$
CULATE UNIT VECTOR ALONG INTERATOM AXISE
L RELVEC（R，E，C1，C2）
$=\operatorname{LLIM}(K)$
．$=\operatorname{LLIM}(L)$
：$=$ ULIM（K）
$=U L I M(L)$
$2 B K=U L K=L L K+1$
२3L＝ULL－LLL＋1
$=A N(K)$
$=A N(L)$
OP THRU PAIRS OF BASIS FUNCTNS，OVE ON EACH ATOM
$200 I=1$, NOREK
$200 \mathrm{~J}=1$ ，NORBL
（K•EG•L．）GO TO 160
（MC（I）．NE．MC（J））GO TO 20 SEE STATEMENT 150
（MC（I）．LT．O）CO TO 148 ．
VV $=((M U(A N K) * R) * *(2 * N(A N K)+1) *(M U(A N L) * R) * *(2 * V C(A N L)+1) /$
CCT（2＊NC（ANK））＊FACT（2NNC（ANL）））
S＝SS（NC（ANK），LE（I），MC（I），NC（ANL），！こ（J），MU（ANく）＊R，MU（ANL）＊R）
（NEWV．LE• O）GO TO 135
：RS $(I, J)=D S Q R T(N E W V) * I=I \cdot D O) * *(L C(J)+M C(J)) * N E W S$
TO 190
$\operatorname{RSS}(I, J)=0.00$
TO 190
$\operatorname{RS}(I, J)=\operatorname{PAIRS}(I-1, J \sim 1)$
TO 190
RS（I，J）$=0.000$ ZERO DIFFERENTIRL OVERLAP APRBOXIMATION TO 190
（I．EQ．J）GO TO 170
$R S(I, J)=0.000$
TO 190

201670
001680
001690
001700
001710
301720
001730
001740
001750
001750
001770
001780
001790
001300
001810
021820
001830
021840
001350
001350
001370
001880
001890
001900
301910
201920
301930
001940
001950
001960
001970
001980
201990
002005
022010
002020
002030
002040
002050
002060
002070
002080
002090
002100
002110
002120
002130
002140
002150
002150
つつこ：7 つ
002180
002190
002200
302210

Was the probiem area．We created variabies NEWV and NEWS to break up pAiRs（I，J）iN
ement 130．PAiRS (I, J) are the arerkp inkgral matix elements．

0^{2}

PROGRAM CNINOO OO SJJRCE $\quad \times \times \times \times 567890$ JATE
1•••／••••
$R S(I, J)=1 \cdot 000$0コ2220
ITINUE 002230ITINUE002240ルイニレC（NORBK）○つこ250
ルL = LC (NORBL)
00225
$G=M A X O(L$ LULK,LEULL)
$R \cdot G T \cdot O \cdot 00000100)$ GC TO 220
$L=M A X O(L$ CULK.LEULL)
$R \cdot G T \cdot O \cdot O 0000100)$ GC TO 220
TC 250

- \angle TE INTE JRALS =ROM DIATOMIC RASIS TO MOLERJLAR $3 A S I S$
L HARMTR(T,MAXL,E)
230 I = 1 N NORBK
00こっ70
002230
コクロ29
っ2300
$230 \mathrm{~J}=1$, NORBL
$1 P(I, J)=0.00$
$230 \mathrm{KK}=1$, NORSL
$1 P(I, J)=T E M P(I, J)+T(J, K K) * P A I R S(I, K K)$
ITINUE
$240 I=1$, NORBK
$240 \mathrm{~J}=1$, NORBL
RS (I, J) $=0 . D 0$
$240 K K=1$, NORBK
$R S(I, J)=P A I R S(I, J)+T(I, K K) \neq T E M P(K K, J)$
ITINUE
L 5 MATRIX
IT INUE
26O I = 1, NOR3K
$: P=L L K+I=1$
$260 \mathrm{~J}=1$, NORBL
$P=L L L+J=1$
LKP,LLLP) $=P A I R S(I, J)$
ITUTATION OF MCENTER COULOMR INTARALS JVER SLATER S FUNCTIONS
:NC (ANK)
:NC(ANI.)
: MU(ANK)
MU (ANL)
$K \cdot N E \cdot L)$ GO TO 290
$1 M 1=F A C T(2 \times N 1-1) /(T 2.00 * N=1 * *(2 * N 1))$
$M 2=0 . D 0$
$=2 \times N 1$
$280 \mathrm{~J}=1 \mathrm{LI}$
$=J *(2 \cdot D O * K 1) * 4(2 * N$ -
$=$ FACT $(2 * N 1 * J) * 2 \cdot S N N 1 *(2 \cdot D 0 *(K 1+K 2)) * *(4 * V 1=J)$
$\because 12=T E R M 2+N U H / D E N$
TINUE.
-O 310
PUTATION OF RッEENTER COULOMB INTEGRA-S JVER S.ATER S FUNCTIONS
$M 1=(R / 2 \cdot 00) * *(2 * N 2) * S S(0,0,0,2 * N 2 * 1,0,0 \cdot 00,2 \cdot 00 * K 2 * R)$
$M 2=0.00$

$=2 * N:$
$300 \mathrm{~J}=1$ LLIM
$M 2=T-R M 2+(J *(2 \cdot 00 * K 1) * *(2 * N 1 \approx J) *(2 / 2 \cdot J 0) * *(2 * N 2 * J+2 * N 2)) /$
(FACT(2*N1*J) *2. DO*N1)*SS(2*N1*J, 0, 0, 2*N2=1,0,2,00*K1*R,2.00*
く2*
$M A(K, L)=((2 \cdot 00 * K 2) * *(2 * N 2+1) / F A C T(2 * N 2)) *($ PEマY1*FERM2) OD2740
TINUE
METRIZATION OF OVERLAP AND COULOMB IVTEGRAL YATRICES $9227 S O$

0

CE ALLOCATION

O

UBLE PRECISION FUNCTION SS（NN1，LL1，MM，VV2，LLZ，A＿－PHA，BETA）

002ョうつ OCEDURE FOR CALCULATING REDUCED OVERLAP IVTE．SRALS MMON／AUXINT／A（17），B（17）
TEGER ULIM
$=\mathrm{NVI}$
$=L L 1$
MM
＝NN2
＝LL ？
$=(A L P H A+B E T A) / 2 . D 0$
$=(A L P H A-B E T A) / 2 \cdot D O$
$=0.00$
IABS（M）
VERSE QUAVTUM NUMBERS IF NECESSARY $(1 L 2 \cdot L T \cdot L 1) \cdot O R \cdot((L 2 \cdot E Q \cdot L 1) \cdot A N D \cdot(N 2 \cdot L T \cdot N 1)))$ TO 30
$=N 1$
$=\mathrm{N} 2$
$=k$
LI
$=12$
$=-K$
$=-1$
VTINUE
$=$ MOD（（N1＋N2－L1－L2）， 2 ）
V）A AND B INTEGRALS
L AINTGS（P，N1＋V2）
L EINIGS（PT，$\sqrt{1+N 2}$ ）
（1L1．GT．01•OR•（b2．GT．0））GO TDS
IIN SECTION USED FOR OVERLAP ZNTEQRALS IVVOLVING S FUNCTIONS
10 Z TABLE NUMBER L
$=(90-17 * \sqrt{ } 1+\sqrt{ } 1 * * 2-2 * N 2) / 2$
$H M=N 1+N 2$

```
\(11=0\)
50I=LLIY,ULIM
```


ITINUE
ITINUE
$1+Z * A(I+1) * B(N N I 1) / 2 \cdot 00$
ITINUE
ix
TO 80
IN SECTION USEJ FOR OVERLADS INVOLVIVG VONーS FJVCTIONS 10 Y TABLE NUMBER L
$5-M) *(24-10 * M+M * * 2) *(83-30 * M+3 * M * * 2) / 120+$
$30-9 * L 1+L 1 * * 2-2 * N 1) *(28-9 * L 1+L 1 * * 2=2 * V 1) / 8+$ $30=9 \times L 2+L 2 * * 2-2 * N 2 / / 2$

コつこの50
002970
002980
002990
003000
003010
003020
－03つ3コ
003040
003050
003.060

003075
003080
003090
003100
003110
003120
033130
003140
0031 ミ0
003160
003170
003180
003190
003200
003210
0こ322コ
つつ32こう
003240
つつろこうつ
003250
00327コ
00328
ココア2эコ
$0 コ 330 コ$
00331
コつ332
203330
ココ334コ
0033 ラ
00335コ
003370
023380
003390
003400
003410
003420
3034．30
00うム40
003450
003450
003470
003～8コ
0コ349

0

ILLOCATION

0

BRJUTINE HARMTR（T，MAXL，E）ROTATES integrals erom diniomic to molecular basis JEIE PRECISION T，E，COST，SINT，COSP，SIVP，COS2T，SIN2T，COS2P，SIV2 SごマT3
MENSIOV T（9，9），E（3）
003750 003750 $S T=E(3)$ 0.33770 003780
$(11 \cdot 00=\operatorname{COST**2)\cdot GT\cdot 0.0000000001)30~TO~} 20$
$N T=0 . D O$
TO 30
$V T=D S Q R T(1 \cdot D O=\operatorname{COST} T * 2)$
VTINUE
（SINT．GT．O．000001DO）GO TO 50

TO 70
SP $=E(1) / S I N T$
$N P=E(2) / S I N T$
NTINUE

```
80 I=1,9
```

$80 \mathrm{~J}=1,9$
$I, J)=0.20$
$1,1)=1 \cdot D 0$
(MAXL•GT•1) GO TO 100
(MAXL.GT.O) GO TO 110
TO 120
S2T $=\cos T * * 2-S I N T * * ट$
$V 2 T=2 \cdot D O * S I N T * C O S T$
s2P $=\cos P \times * 2 \sim \operatorname{SINP} * * 2$
V2P $=2 \cdot D 0 * S I N P * \operatorname{COSP}$
AVSFORMATION MATRIX ELEMENTS EOR O LJVCTIJNS
RT3=DSQRT (3.00)
$\overline{5}, 5)=(3 \cdot D 0 * \cos T * * 2 * 1 \cdot 00) / 2 \cdot 0 /$
$5,6)=-$ STRT3 *SIN2T/2.DO
$5,81=$ SQRT3 *S:NT**2/2.DO
$6,51=$ Sコ२T3 *SINET*COSP \&OU
$5,61=\cos 2 T * \cos 5$
$6,7)=-\operatorname{COST}$ (SINP
$5,8)=-T(6,5) /$ SQRT 3
$5,91=$ SINT*SINP
$7,51=$ SURT3 *SIN2T*SNP/2.00
$7,61=\cos 2 T * \operatorname{sivp}$
$7,7)=\cos T \times \cos p$
$7,8)=-T(7,51 / S$ SQRT3
$7,91=-$ SINT*COSP
$3,51=$ SQRT $3 * \operatorname{SINT} * 42 * \cos 2 P / 2.00$
$3,61=\operatorname{SIN} T * \operatorname{CoS} 2 P / 2 \cdot 00$
$3,71=-5 I N T * S I V 2 F$
$(8,8)=(1 \cdot 00+\operatorname{COST} 42) * \operatorname{COS} 2 P / 2 \cdot D 0$
$3.91=-\operatorname{COST*SIV2P}$
$3,51=$ SQRT3 *SINT**2*SIN2P/2.00
3,6) $=$ SIN?T*SIV2P/2.00
$3,71=$ SINT*COS2P
$3,81=(1.00+\cos T * * 2) * S I N 2 P / 2 \cdot D 0$
$3,91=\cos T * \cos 2 ?$
ITINUE
INSFORMATION MATRIX FLENENTS FOR P =UVCTIJNS
003790
003900
003810
003820
003930
003840
003850
003860
003870
003880
003890
003900
003910
003920
003930
033940
0039うコ
0039ちコ
003970
003980
00399コ
004000
004010
004020
004030
004240
004050
004060
004073
004080
004090
004100
004110
004120
004130
004140
004150
004160
004170
004180
004190
004200
004210
004220
$0 コ 4230$
004240
004 こうつ
004250
004275
004250
0コ429コ

0

$(2,2)=\cos T * \cos p$
$(2,3)=-$ SINP
$(2,4)=\operatorname{SINT} * \cos P$
$|3,2|=\operatorname{COST} * \operatorname{SIND}$
$|3,3|=\operatorname{cosp}$
$(3,4)=$ SINT*SINP
$(4,2)=-5 I N T$
$(4,4)=\cos T$
NTINUE
ITURN

SUBROUTINE
QDBLE
DSORT
QSTOP
ALLOCATION
RMTR
inp
N2T

```
                00084 COST 00044 I
\(0003 C\) COS2P
```

0008 C SINT
00048 J
$000 C 4$ SIN2P

004300
004310
004320
004330
004340
0つ4350
004350
$0 コ 4370$
004380
004390
004400

LLOCATION

0^{2}

```
PROGRAM ENINDO OO SOUREミ XXXX567890 OATE E
```


3ROUTINE RELVEC(R,E,C1,C2) CALCLLATES UNIT VECTOR ALONG INTERATOMAC AKIS 034410
JBLE PRECISION E, C1, C2,X,R

004420
0.04430
YENSION E(3),C1(3),C2(3)

004440
004450
004450
004470
004480
004490
004500
004510
004520
004530
004540
0045 う
004560

DR.R

PROGRAM CNINDO 00
SコンRE \quad Xx××567890
DATE

USLE PRECISION FUNCTION FACT (N) COMPLTES N FACTORIAL. IUBLE PRECISION PRODT ODT $=1.00$
$30 \quad I=1, N$
ODT $=$ PRODT $\# I$
CT=PRODT
TURN
10
004570
034580
004590
004500
004510
004520
004530
004540

SUBROUTINE
: CNVIR QSTOP
ALLOCATION
c°
00028 PRODT 00030 I

O

PROGRAM CNINDO 00
SOURこE XXXX567890
دATE

BROUTINE BINTGS (X, K) CALLED in SS．
LLS ARRAY OF BmINTEGRALS．NOTE THAT 3（I）IS 3（I＊1）IN THE AL NOTATION

R $X \cdot G T \cdot 3$
R 2．LT．X．LE． 3 AVD K．LE． 10
2．LT•X•LE． 3 AVD K．GT． 10
A．LT•X •E． 2 AVD K．LE． 7
1．LT•X•LE．2 AVD K．GT． 7
－5．LT•X•LE． 1 ANO K•LE． 5
－5．LT•X•LE•1 AND K•GT•5
X•LE．． 5

EXPONENTIAK OORMJLA IS USEJ
EXPONENTIAL GORMJLA IS USED
15 TERM SERIES IS USミD
EXPONENTIAL FORMJ＿A IS USEO
12 TERM SERIES IS JSミコ
EXPONEVTIAL FJRMULA IS USED
7 TERM SERIES IS JSED
6 TERM SERIES IS USEO

004550
004550
004570
004530
004590
004700
004710
004720
0.04730

004740
004750
004759
004770
004780
0047 Э0
004800
004810
304820
004930
0049，40
00ヶ5うう
004850
004872
024830
004890
004900
$00+910$
004 92コ
004930
024940
004930
004950
004970
004980
004 990
－ 35000
005210
コอรีコอ
0つ503つ
055040
005050
005063
コロ507コ
005082
00：509
005：00
055110
035120
0コ5：3つ
0つこ140
つつ5150
005：50
005172

0

```
PROGRAM CNINDO OO
SOJRCE
xxxx567890

3RDUTINE AIVTGSiX,K) CALLED in SS. FMIS ARRAY OF A IÑTEGRALS. JBLE PRECISION A, B MMON/AUXINT/A\{17),B(17)
```

5 I =1,17

```
i) \(=0.00\)
VTINUE
1) \(=\operatorname{DEXP}(-\mathrm{X}) / \mathrm{X}\)
\(10 \quad I=1, k\)
\(I+1)=(A(I) \times I+D E X P(-X)) / X\)
TURN
\(\qquad\)
, ALLOCATION
000883

SUBROUTINE
DEXP

ITOS \(0004 C^{-}\)I
LOCATION

\section*{\(0\)}

BROUTINE MATOUT（N，MATOP） UBLE PRECISION A

YMON／ARRAYS／A（31，31，2），OUMMY（622）
\(80 \quad M=1, N, 11\)
\(M+10\)
\((K \cdot L E \cdot N)\) GO TO 30
v
VTINUE
ITE \((3,40)(J, J=M, K)\)
RMAT（／／，7x，11（4x， \(2,3,3\) ），／／）
\(60 I=1, N\)
ITE \((3,50)\) I，（A（I，J，MATOP），J＝M，K）
RMAT（1X，12，4X，50（F9．4））
VTINUE
ITE（3， 70 ）
？MAT（／／）
vTINUE
TURN


PRINTING ROLTINE FOR OVERLAP ANO COULOME INTEGRAL MATRIEES．

0つ巨こうつ
005300
005310
005320
005330
005340
005350
025350
005370
005380
005392
025400
005410
0.05420

005430
005440
005450
005460
005470

SUBROUTINE
QFWRIT
ALLOCATION
TOUT \(\quad 00040 \mathrm{M}\)
＝LOCATION

QSTOP

00048 J

\section*{DR}
```

MMON/INFO/NATONS,CHARGE,MULTIP,AN(10),C(10,3),N

```
MMON/INFO1/CZ(10), U(31), ULIM(10), LGIM(10), NELECS, OCCA,OCCB
005500
MMON/GAB/XXX(155),G(10,10),Q(31), YYY(31), ENERGY, XXY(312)
MMON/OPTION/OPTION, OPNCLO, HUCKEL, CNOO,INOO」CLOSEJ, OPEN
TEGER CHARGE, OCCA, OCCB,UL,AN,CZ,U,ULIM, AVI
TEGER OPTION, OPNELO,HUCKEL, CNDO, INDO, ELOSED, OPE
\((4)=.1407\)
\((5)=.199265\)
G! (18), F2 (18), ENEG \((18,3)\) AND

\section*{\(0\)}
```

 PROGRAM CNINDO OO
 SJUREE
 1..../....2..../....3..../....4..../....5..../....6..../....7... วasLIV
G(:5,2)=5.46.38
005030
G(15,3)=0.500
G(16,1)=17.6496
G(16,2)=6.989
G(16,3)=0.71325
:2(17,:)=21.5906
:G(17,2)=8.7081
G(:7,3)=0.97695
AO(1)}=-9
AO(4)=-13.
AO(5)=-17.
AO(6)=-21.
AO(7)=-25.
AO(8)= -31.
AO(9)=-39.
AO(11)=-7.7203
AO(12)=-9.4471
AO(13)=-11.301
AO(14)=-13.065
AO(15)=-15.070
AO(16)=-18.150
AO(17)=-22.330
IDNELECS AND EILLH CORE(DIAGONALI NITHSI+AL/2
ECS=0
6OI=1,NATOMS
ECS=VELECS+CZ(I)
=LLIM(I)
=ULIN
=ULIM(I
=AN(I)
50 J=LL,UU
(L.EO.1) GO TO 10
(L.LT.5) GO TO 40
,-j)=~ENEG(ANI,3)/27.210Q
TO 50
1,J)=-ENEG(ANI,21/27\cdot21DE
TO }5
|,J) ==ENEG(ANI,I)
TINUE
ITINUE
.ECS=NELECS~CHARGE
:A=NELECS/2
M HUCKEL HAMILTOVIAN IN A IOFF OIAGOVAL TWO CENGER TERMSI
90 I=2,N
J(I)
N(K)
I-:
90 J=1,UL
U(J)
GN(KK)
((L.GT\cdot9)\cdotOR\cdot(L,b.GT\cdot9)) so T0 70
6540
TJ)=A(I,J)*(BETAO(L)+BETAO(LL))/54.4200
วう
|I)=A(I,J)

DR

PROGRAM CNINDO 00
SコンRCE $\quad x \times x \times 567890$
JATE

TO 90
$(I, J)=0.7500 * A(I, J) *($ BETAO（L）+ BETAO（LL））／54．42）
$(J, I)=A(I, J)$
JNTINUE
$100 I=1, N$
$(I)=A(I, I)$
$10=1 \cdot 0-6$
AhL EIGN（N，RHO）
（GENVECTORS（IN B）ARE CONVERTED INTO JENSITY YATRIX（？N B）
$140 I=1 / N$
$120 \mathrm{~J}=\mathrm{I} \mathrm{N}$
$\langle x(J)=0.000$
$1: 0 \mathrm{~K}=1$ ，OCC
$(x(J)=X X X(J)+5 \cdot 20 * B(I, K) * B(J, K)$
JVTINUE
） $130 \mathrm{~J}=\mathrm{I}, \mathrm{N}$
$I, J)=X X X(J)$
INTINUE
） $150 \mathrm{I}=1, \mathrm{~V}$
） $150 \mathrm{~J}=\mathrm{I}, \mathrm{v}$
J， 1$)=3(1, J)$
iO V（AB）TO MCORE＝CNDO
17J I＝1，N
いし！
I）$=Q(I)+0.500 * G(\mathrm{~J}, \mathrm{~J})$
$150 \mathrm{~K}=1$ ，NATOMS
$I)=Q(I)=(C Z(K)) * G(\jmath, K)$
IVTINUE
IT SEGMENT IF OVLY CNDO APPROX：MANOVS ARE 2ESIRZ2
（OPTION．EQ．CNDO）GO TO 290
20 MODIFICATION（CORRECTION TKUI，I））
280 I $=1, N A T O M S$
AN（I）
LLIM（I）
（（K•GT•1）．AND．（K．LT．10））RO TO 190
－TO 280
（K．LE．3）GO TO 210
J）$=0(J)+(c z(I)=1.500)$ N2 $1(K) / 6.00$
TK•EO．3） $30^{-10-220}$
（K•EQ．4）GO TO 240
$M P=G 1(K) / 3 \cdot D 0+(C Z N)-2 \cdot 5 D 0) * 2 \cdot D 0 * F 2(K) / 25 \cdot 00$
TO 250
MP＝G：（K）／4•DO
TO 260
$M P=G 1(K) / 12 . D 0$
VTINUE
$270 \mathrm{~L}=1,3$
$K K=J+L$

```
KKKK)=2(KKKK) +TEMP
```

NTINUE
VT INUE
$310 \quad I=1, V$
$300 \mathrm{~J}=\mathrm{I}, \mathrm{N}$
$J, I)=A(I, J)$
$I, I)=Q(I)$

006582
026590
006600
005510
006620
006630
006640
006650
005650
006670
006580
006630
006700
005710
006720
006730
006740
006750
006750
005770
00ロ́78コ
03679 9
005900
005810
026820
006830
006840
005350
005850
005870
006880
306890
006900
005910
006920
006930
006940
006950
006953
006970
006980
096990
007000
007010
○つフコこコ
007030
007040
007050
0コフコロコ
0コ7コフコ
007380
007 このコ
057100
007110
00712コ

DR

:ITE 3,320$)$
JRMAT(1X,18H CORE HAMILTONIAN/)
LLL SCFOUT $(0,1)$
TURN
/ ALLOCATION

$$
01 E 08 \text { B } 03 C 10 \text { DUMMY }
$$

, allocation
TOMS
00004 CHARGE
00008 MULTIP 00124 N

- ALLOCATION

TION 100

SUBROUTINE
EIGN
00004 OPNCLO

ALLOCATION
$1 C<C L$

001 CO UL
00100 K
001 E8 KKKK

LLOCAT:ON
E
002C4 BETAO
0030 C G1
00354 F2

$I, I)=A(I, I)+B(K, K) * G(I I, J J)$
$=\mathrm{N}=1$
$40 I=1, N M$
$=U(I)$
$=I+1$
40 J=LL, N
$=U(J)$
J,I) $=$ A (J,I) $=3(J, I) * G(I I, J J) * 0.500$

80 II＝1，NATOMS AV（II）
HLIM（EI）
（K．EQ．1）GO TO 80
$A=B(I, I)+B(I+1, I+1)+B(I+2, I+2)+8(I+3, I+3)$
$I, I)=A(I, I)=(P A A=B(I, I)) * G I(K) / 6 \cdot 00$
$70 \quad J=1,3$
$L=I+J$
$L L L, L L L)=A(L L I, L L L) * B(I, I) * G 1(K) / 6 \cdot D 0=(P A A=3(I) I)) * 7 \cdot D 0 *$
$() / 50 \cdot 00+$（LLL，LLL）＊11．00＊F2（K）／50．00
$L L L, I)=A(L L L, I)+B(I, L L L) * G 1(K) / 2 \cdot 00$
$=I+1$
$=I+$ ？
$=I+3$
$I 2, I 1)=A(I 2, I I)+3(I 2, I 1) \neq 11.00 \times F 2(<) / 50 \cdot 00$ $I 3, I 1)=A(I 3, I)+B(I 3, I 1) \neq 11 \cdot 00 \neq F 2(K) / 50 \cdot 20$ $I 3, I 2)=A(I 3, I 2)+3(I 3, I 2) * 11 \cdot 00 * F 2(K) / 50 \cdot 00$ NTINUE
NTINUE
$100 I=1 \mathrm{~N}$
$E R G Y=E N E R G Y+0 \cdot 500 * B(I, I) *(A(I, I)+Q(I))$ $105 I=1, \mathrm{NM}$
$=I+$ ？
$105 \mathrm{~J}=\mathrm{L} L, \mathrm{~V}$
$\frac{E R G Y=E N E R G Y+3(I, J) *\{A(I, J)+A(J, I)}{I T E(3+110) \text { ENERGY }}$
RMAT $/ / /, 10 X, 22 H$ ELECTRONIC ENERGY （DABS（ENERGY－OLDENG）GE． 100000100
$I T E(3,140)$
RMAT $5 \mathrm{X}, 18 \mathrm{H}$ ENERGY SATISFIED
TO 170
VTINUE
DENG＝ENERGY
NTINUE
（Z．LE．IT）GO TO 210
MMETRIZE F FOR PRINTING（M，TRIX A）
$190 I=1, \mathrm{~V}$
$190 \mathrm{~J}=\mathrm{I}, \mathrm{V}$
IJ J $)=A(J, I)$
ITE 3,200$)$
マMAT（ $1 \mathrm{X}, 27 \mathrm{H}$ HARTREE WOCK ENERGY MATRIX） ¿h， $\operatorname{SCFOUT}(0,1)$
VTI INUE
$=L E I G N(N, R H O)$
（Z．LE．IT）GO TJ 240
ITE 3,230$)$
RMAT 1 X，2SHEIGEVVALUES AND EIGENVECTORS）
$=L$ SCFOUT 1,2 ）
VTINUE
SENVECTORS（IN B）ARE CONVERTED INTO DENSITY MATRIX（IN 3） $280 \quad I=\{, N$
$260 \quad J=I, N$
$र(J)=0.000$
$250 \mathrm{~K}=1,0 \mathrm{CCA}$

007730
007740
007750
007750
007770
007780
007790
007800
007810
007825
007830
007840
007850
007860
057870
027880
007890
007900
007910
20792
007930
007940
007950
007950
007970
007980
007990
009000
008010
008020
058030
008040
0） 05 5
053060
0） 3070
00きロ8コ
$09309 J$
002100
008：10
005120
008130
009140
0つな 150
0081 ： 0
003170
008180
0.3190

003200
ココ8こ：
つつ3さ2コ
－つタ23
つつ8240
つつるこうコ
0 0825コ
00827コ

PROGRAM CNIVOO OO
$K x(J)=x \times X(J)+B(I, K) * B(J, K) * 2.000$
JNTINUE
2 $270 \mathrm{~J}=\mathrm{I}, \mathrm{N}$
$(I, J)=x \times X(J)$
JNT INUE
) $290 I=1, N$
$290 \mathrm{~J}=\mathrm{I}, \mathrm{v}$
$J, I)=(I, J)$
(Z.LE.IT) GO TO 10

JVTINUE
:TURN
10

$$
\text { O1E08 } 8 \quad \text { O3C10 DUMMY }
$$

/ allocation
$\begin{array}{lll}X & 00408 & 007 F 8 \\ \text { ORGY } & 009 F 0 \quad X X Y & \end{array}$
/ ALLOCATION
$\begin{array}{rr}\text { TOMS } & 00004 \\ & 00124 \\ \text { ALLOCATION }\end{array}$
$\begin{array}{lll} & 00028 \text { U } & \text { OOOAANEIM } \\ \text { LEES } & \text { OOOF8 OCCA } & 000 F A O C C B\end{array}$
/ allocation
$\begin{array}{ll}\text { TION } & 00004 \text { OPNCLO } \\ 0 O & 00014 \text { CLOSED }\end{array}$
SUBROUTINE
QFWRIT
QIOE?
HAR
CCA
00008 MULT

008280
008230
008300
008310
008320
008330
008340
008350
008350
008370
008.380

008390

ALLOCATION

00000 IT	00054 RHO
$000 E 4$ II	OOOES K
00054 LE	$000 F 8$ PA1
00108 I2	0010 CI 13

IVTINUE
IENG（1）$==0.6387302462$ ENG（3）$==\cdot 2321972405$ －ENG（4）＝ 1 1．1454120355 －ENG（5）$=-2.9774239048$ －ENG $(6)=-6.1549936261$ －ENG（7）＝$-11 \cdot 0768746252$ ENG $(8)=-18 \cdot 0819658651$

DO D

ENG（9）$=-27 \cdot 5491302880$ ENG（11）$= \pm .1977009568$ ENG（12）$= \pm .8671913833$

- ENG(13) $=-2 \cdot 0364557744$
ENG $(14)=-3 \cdot 3979034686$
ENG(15) $=\omega 6 \cdot 7966009163$
- $\operatorname{ENG}(16)=-10.76581743 / 100$
ENO $(17)==16.04670179400$
INTINUE
NATOMS -1
!ITE $(3,40)$
IRMAT($1 \times, 15$ DENSITY MATRIX)
IbL $\operatorname{SCFOUT}(0,2)$
$50 \mathrm{I}=1, \mathrm{~K}$
: +1
$50 \mathrm{~J}=\mathrm{L}, \mathrm{NATOMS}$
$D=\operatorname{DSGRT}((C(I, 1)=C(J, 1)) * * 2+(C(I, 2)=C(J, 2)) * * 2$
$+(こ(I, 3) \cup C(J, 3)) * * 2)$
ERGY = ENERGY + (CZ(I)*CZ(J))/RAD
ITTE(3,60) ENERGY
IRMAT(//,10X,16H TOTAL ENERGY = F16.:0)
$70 \mathrm{I}=1$, NATOMS
$I=A N(I)$
008620
008530
008640
008650
008650
008670
008680
003690
003700
008710
00572.0
003730
008740
008750
008750
008770
008780
008790
008800
008810
008820
008830
008840
008830
003850
008870
008880

PROGRAM CNINOO 00
SOURCE
xxxx567890
DATE ©

ERGY＝ENERGY－ATENG（ANI）008．50
ITE $(3,80)$ ENEPGY
008950
RMAT（／／，10X，16HSINDING ENERGY＝，F16．10，5H A．J．）
$110 \mathrm{I}=1, \mathrm{NATOMS}$
$H G=0.00$
＝LLIM（I）
$=U L I M(I)$
$90 \mathrm{~J}=\mathrm{I} . \mathrm{L}, \mathrm{JL}$
$G=T C H G+B(J, J)$
$=A N(I)$
TE（3，100）I，EL（ANI），TCHG
マMAT（I3，A4，8X，F7．4）
$X(I)=T C H G$
VTINUE
$120 I=1,3$
008370
I）$=0.000$
$S P(I)=0.000$
$D(I)=0.000$
$200 \mathrm{~J}=1$, NATOMS
（AN（J）．LT•3）GO TO 180
（AN（J）•LT•11）GO TO 140
TR1 $=(\cdot 6500 \times A N(J)=4 \cdot 9500) / 3 \cdot 00$
$=T O R=2 \cdot 541600 * 7 \cdot D 0 /(0 S Q R T(5 . D 0) * S L T R 1)$
こEX＝LLIM（J）
$170 K=1,3$
$n M=I N D E X+K$
$S P(K)=\operatorname{DMSP}(<)-B(I V D E X, M M M M) * 10.271750$ SLTR1
OD（1）＝DMPD（1）\＆FACTOR＊（B（INDEX＋2，INDEX＋3）＋3（IVJEX\＆3，INDEX＊5）

$O(2)=D M P D(2)-F A C T D R *(E(I N D E X+1$, ND $(X+8)+B(I N D E X+3$ ，INDEX +6 ）

OD（3）＝DMPD（3）＝FACTOR＊（B（INDEX＋1NNDEX＋5）＋3（INDEX＋2，INDEX＋6）
2．DO／DSQRT（3．DO）＊3（INDEX 3 ，INPEX＋47）
TO 180
गEX＝LLIM（J）
$150 k=1,3$
MM＝INDEX＋K
$S P(K)=D M S P(K) \omega 3$（INDEX，MMAM）＊7．3369700／
32500 ＊（AVTJ）
$190 I=1,3$
$(I)=D M(I)+(C Z(J) * \times \times(1) * C(J, I) * 2 \cdot 5416) 0$
VTINUE
$210 \quad I=1,3$
$Y(I)=D M(I)+O M S P(I)+D M P D(I)$
ITE $(3,220)$
PMAT（／／，20X，16H DIPOLE MOMENTS，／1）
ITE $(3,230)$
RMAT（5X，1：H COMPONENTS， $3 X, 2 H X, 8 X, 2 H Y, 8 X, 2 A Z)$
ITE（3，240）DM（1），DM（2），DM（3）
RMAT（5x，1OH DENSITIES，3（1X，F9．5））
ITE（3，250）DMSP（1），DMSP（2），DMSP（3）
RMAT（5X，4H S．P，6X，3（1X，F9．5））
ITE $(3,260)$ DMPD（1），DMPD（2），DMPD（3）
RMAT $(5 x, 4 H$ P．D， $6 x, 3(1 X, F 9.5))$
008980
008990
00900 ）
059010
009020
009030
009040
009050
009050
009070
009080
009090
009100
009110
009120
009130
009140
009150
009160
009170
009180
007190
009200
009210
0コ9？2ว
$0 コ 9230$
009240
ゝつ92うつ
009250
0ココ27
009280
009290
009300
009310
009320
009330
029340
009350
009360
009：370
009.380
009390
029400
009410
009420
つソ9 40
009442
コこけムよう
0こ9450
009470
009480
ITE（3，270）DPM（1），DPM（2），DPM（3）
0.09490

.OCATION
$0010 C$ DM
OO1E4 DMS?
OO1FE DMPD

BROUTINE EIGN（NV，RHO）DIAGONALIEATION ROUTINE

JUBLE PRECISION RHO，A，VEC，GAMMA，BETA，उETASO，EIG，W，XYZ，
009350 ，O，RHOSa，S，SCV，SQRTS，D，TEMP，NTAW，SUM，ЭJ，WJ，SHIFT， دSA，G，PPBS，PPBR，COSAP，SINA，SINAZ，DIA，J，AZ，R2，R1，R12， IF，Pp
$-10=$ UPPER LIMIT FOR OFF＝DIAGONAL ELEMENT
$V=$ SIZE OF MATRIX
＝F MATRIX（ONLY LOWER TRIANGLE IS USED＋THIS IS DESTROYED）
IG＝RETURNED EIGENVALIJES IN ALGESRAIC ASCENJING JRDER ＝RETURNED EIGENVECTORS IN COLUMNS JMMON／ARRAYS／A（31，31），VEC（31，31），DUMMY（622）
JMMON／GAB／GAMMA（31），BETA（31），BETASQ（31），EIG（31））W（31）JXYZ（475） HE FOLLOWING DIMENSIONED VARIABLES ARE EQJIVALENEEO IMENSION P（31）， $\mathrm{A}(31)$
2UTVALENCE（P（1），3ETA（1）），（Q（1），BETA（1））
IMENSION IPOSV（31），IVPOS（31）IORD（31）
JUIVALENCE（：POSV（1）ノGAMMA（1））」（IVPJS（1），ЗETA11
I JRJ（1），BETASQ（1）
HOSQ $=$ RHO＊RHO
$=\mathrm{NN}$
$=(N \cdot E Q \cdot O) G O T O-640$
$1=N=1$
$z=N-2$
$\triangle M M A(1)=A(1,1)$
$=(N 2) 200,190,40$
כ 180 NR＝1，N2．
$=A(N R+1, N R)$
$=0.00$
， $50 I=N R, N 2$
$=A^{\circ}(I+2, N R) * A(I+2, N R)+S$
REPARE FOR POSSIBLE BYPASS OF RR NSSORMATION
RRR $=N R+1$
（NRRR，NR）$=0.00$
（S） $170,170,60$
$=S+B * B$
SN $=+1 \cdot 00$
（B） $70,80,80$
iN $==1 \cdot 00$
JRTS＝DSQRT（S）
$=S G N /(S Q R T S+S Q R T S)$
：MP＝OSQRT $(.500+B * D$
$(V R)=T E M P$
（NRRF，NR）$=T E M P$
－O／TEMP
：－SGN + SORTS
IS FACTOR OF PROPORTIUNALITY．NOW COMPUTE ANJ SAVE W VECTOR．
ITRA SINGLY SUBSCRIPTED W VECTOR USED FOR SPEEJ．
（） 90 I＝NR，V2
$: M P=D * A(I+2, N R)$
$\therefore=\overline{1}+1$
II 1）＝TEMP
$2=I+2$
II2，NR）$=T E M P$
REMULTIPLY VECTOR W BY MATRIX A TO OBTAIV P VミこTコマ．
I：MULTANEOUSLY ACCUMULATE DOT PRODUCT NP，（THE SCALAR＜）

009570
099580
009590
005500
10951
009620
009630
009640
009650
0.9660

009670
009580
009690
009700
009710
0 0972コ
$0 コ 9730$
009740
009750
005750
009770
009780
059790
009800
009810
009820
009850
009840
029850
00ミ8ちつ
00.9870

009880
009890
009900
009910
00992コ
009930
009940
009950
009950
009970
009980
0．29ロココ
010000
010010
010020
210030
010040
010050
010063
010070
010080
010090
010100

140 I $\because N R, N 1$
$J M=0 . D 0$
$100 \mathrm{~J}=\mathrm{NR}$ ，I
$J M=S U M+A(I+1, J+1) * W(J)$

```
=I +1
```

：（N1－II） $130,110,110$
$120 \mathrm{~J}=\mathrm{I} 1, \mathrm{~N} 1$
$J M=S U M+A(J+1, I+1) * W(J)$
I）$=$ SUM
$\cdot A W=W T A W+S U M * W(I)$
VECTOR AND SCALAF．K NOW STORED．NEXT CUMPUTE コ VECTOR $150 I=N R, N 1$
$I)=P(I)-W T A W * W(I)$
W FORM PAP MATRIX，REQUIRED PART 160 J＝NR，N1
$11=J+1$
＝Q（ل）
lew（J）
$160 I=J, N 1$
$1=I+1$
$I I 1, J J 1)=A(I+1 ; J+1)-2 \cdot D O *(W(I) * Q J+W J * Q(I)$
$T A(N R)=B$
TASQ（NR）$=3 * 3$
$M M A(N R R R)=A(N R+1, N R+1)$
$A(N, N=1)$
$1=N=1$
TA（NN：）＝B
TASO（NN1）$=8 \times 3$
$M M A(N)=A(N>N)$
$\operatorname{TASQ}(N)=0.00$
JOIN AN IDENTITY MATRIX TO BE PSSTMULTIPGIED BY ROTATIONS． $220 I=1, V$ $210 \mathrm{~J}=1, \mathrm{~N}$ $C(I, J)=0.00$ $C(I, I)=1 \cdot 00$

N

$M=0.00$
$4 S=1$
TO 350
$M=S U M+S H I F T$
$S A=1 \cdot D 0$
GAMMA（：）－SHIFT
$=0$
$B S=P P * P P+S E T A S O(1)$
BR＝DSQRT（PPBS）
$320 \mathrm{~J}=1, \mathrm{y}$
$S A P=C O S A$
（PPBS．GT•1．0－12）GO TO 250
$V A=0 . D 0$
$N A 2=0.00$
$S A=1 \cdot D 0$
TO 250
NA＝SETA（J）／PPBR

010110
010120
010130
010140
010150
010160
こ10170
$0: 0180$
010190
010200
010210
010220
010230
210240
ว10つうつ
010260
010270
010280
010 こヲコ
010302
010310
010320
010330
010340
010350
010363
0：0370
010380
010390
010400
010410
010420
210430
010440
010450
01045 J
010470
$0: 0480$
010490
$0: 0500$
010510
010520
010330
0：0540
010550
010550
う：コラプ
$0: 0580$
010590
010500
0105：0
010620
010530
310640
010 ちうこ


```
OSTMULTIPLY IOENTITY BY P-TRANSPOSE MATRIX
```

$T=J+N P A S$
$=(N T \cdot L T \cdot N)$ GO TO 270
$T=N$
$280 I=1$ NT
EMP=COSA*VEC(I,J)+SINA*VEC(I,J+:)
$1=J+1$
EC(I, JJI) = - SINA*VEC(I,J)+COSA*VEC(I,J+1)
$E C(I, J)=T E M P$
$(A=$ GAMMA $(J+1)$ wSHIFT
$=S I N A 2 *(G+D I A)$
$\operatorname{MMA}(J)=G+U$
$=$ II $A-U$
$=$ I I $A * \operatorname{COSA}=S I N A * \operatorname{COSAF} * B E T A(J)$
-(J •NE. M) GO TO 310
!TA(J) $=$ SINA*PP
:TASQ(J) $=$ SINA $2 * P P * P P$
TO 330
13S=6p\#pp+BETASO $(7+1)$
BR=DSNRT $(P P B S)$
:TA(J)=SINA*PPBR
:TASQ(J)=SINA2*PPBS
$1=M+1$
$M M A(M M 1)=G$
ST FOR CONVEREENCE OF LAST DIAGONAL
$A S=V P A S+1$
(BETASQ(M) •GT• RHOSQ) GO TO 370
$11=y+1$
$G(M M 1)=G A M M A(M+1)+S U M$
$T A(M)=0.00$
$T A S C(M)=0.00$
$M=1$
(M.EQ. O) GO TO 400
(BETASO(M) LLE. RHOSQ) EOQN 340
KE ROOT OF CORNER ? BY 2 YLAREST TO LONER DIA3OVAL IN VALUE
ESTIMATE OF EIGENVALUETO USE FOR SHIFT
$=$ GAMMA $(M+1)$
$=0.500 * A 2$
$=0 \cdot 5 D 0 * G A M M A(M)$
$2=R 1+R 2$
$F=R 1-R 2$
$M P=\angle S O R T(D I F * D I F+3 E T A S Q(M))$
$=R 12+T E M P$
=R12-TEMP
$F=D A B S(A 2-R 1)-D A B S(A 2-R 2)$
(DIF•LT•O.DO) GO TO 390
$\mathrm{IFT}=\mathrm{R}$?
TO 230
IFT=R1
TO 230
3(1) =GAMMA $(1)+S U M$
ITIALIZE AUXILIARY TABLES REQUIRED FOR REARRANIIVG THE VECTORS
$410 \mathrm{~J}=1, \mathrm{~N}$
$\operatorname{OSV}(\mathrm{J})=\mathrm{J}$

$\operatorname{Pos}(J)=J$
011210
RD $(J)=J$
E A TRANSPOSITION SORT TO ORDER THE EISEVVALJES
TO 450
$440 \mathrm{~J}=1$, M
(EIG(J) •LE• EIG(J+1)) CO TO 440
$: M P=E I G(J)$
$G(J)=E I G(J+1)$
$11=J+1$
G $(J J 1)=T E M P$
EMP=IORO(J)
$\operatorname{RD}(J)=\operatorname{IORD}(\mathrm{J}+1)$
RD (JJ1)=ITEMO
IVTINUE
$M=1$
(M .NE, O) GO TO 420
(N1 •EQ O) GOTO 510
$500 L=1, N 1$
$=I 0 R D(\mathrm{~L})$
$=I P O S V(N V)$
(NP EQ. L) CO TO 500
$=\operatorname{IVPOS}(L)$
POS $(N P)=L V$
$\operatorname{OSV}(L V)=N P$
$490 \quad I=1, N$
$M P=V E C(I, L)$
$C(I, L)=V E C(I, N P)$
$C(I, N P)=T E M P$
NTINUE
INTINUE
CK TRANSFORM THE VECTORS OF THE TRIPLE DIAGOVAL MATRIX
570 NRR=1, N
N1
< $=$?
TK.LE. O) GO TO 560
$n=0 . D 0$
$540 \quad I=K, N 1$
$M=S U M+V E C(I+1, N R R) * A(5+1, K)$
$y=S U M+S U M$
$550 \quad I=K, N 1$

$1=I+1$
$C(I I 1, N R R)=V E C(I+1, N R R)=S U M * A(I+1, K)$
TO 520
NTINUE
VTINUE
TURN

PROGRAM CNINDO OO
SコJマくミ
$x \times x \times 567890$
JAT

AJBROUTINE SCFOUT（IO，MOP）
$01: 590$
JJUBLE PPECISION A，XXX，C

TIS ROUTINE PRINTS TME AFRAY IN COMYOV／ARRAYS／WHICH IS DESIGVATE
IJP．IF OP $=1$ THE EIGENVALUES CCNTAIVES IN COMMOV／I／ARE ALSO

JRINTED．IF OP＝ 0 THE ETGENVALUES ARE VJT PRIVTED
：JMMON／ARRAYS／A（31，31，2），DUMMY（622）
：JMMON／GAB／XXX（630）
：JMMON／INFO／NATOMS，CHARGE，MULTIF，AN（10），C（10，3），N
：OMMON／INFO1／CZ（10），U（31），ULIM（10），LLIM（10），NE－ECS，OCCA，OCCB
：JMMON／ORQ／ORB（9）
：JMMON／PERTBL／EL（18）
：VTEGER OP，AN，ANII，CZ，U，ORB，ULIM，EL，CHARGE，JCCA，JCころ
） $120 \quad M=1, N, 11$
$:=n+10$
（K．LE．N）GO TO 30
＝ N
：JNTIVUE
12ITE（3．100）
F $10 P \cdot E Q \cdot 11$ GO TO 40
io TO 50
：AbL EIGOUT (M, X)
：OVTINLE
1२ITE（3，SO）（I，I＝M，K）
JRMAT（13X，50I9）
1） $110 \quad I=1 \mathrm{sin}$
$I=U(I)$
VII＝AN（II）
＝IwLLM（IJ）＋ 1

JRMAT（IX，II，I3，A4，IX，A4，50
$=1$（IEQUULIM（II）GO TO 90
ว TO 110
२ITE 3,100 ）
JRMAT（1X）
oVT：NUE
ovTINUE
२ITE（3，100）
२ITE 3,100$)$

011700
011710
011720
011730
011740
011750
011750
011770
011780
011790
011800
011810
011820
011830
011840
011850
011850
011370
011880
211930
011900
011910
011920
011930
011940
011950
011950
011970
011980
011990
ว12コวง
012010
012020
012030
012040
0：20ラコ
012050
012070
$0: 2080$
／ALLOCATION
03C10 OUMMY
／ALLOCATION

PROGRAM CNINDO 00
SOUREE
xxxx567890
jate

/ ALLOCATION
OO2EE EPSILN COBEO YYY.
SUBROUTINE
QFWRIT
QIOED
QFINIO
QSTOP
ALLOCATION
GOUT 00028 I
BLOCATION

DCATION START ADDR END ADDR DEC LENGTH START ADJR END ADOR DE BBJECT PRCGRAM ON PACK 067766

PROGRAM (RES)	30	0 O 0	00	72E8	25832
ERS	30	0 OOO	00	OFBO	432
- Suffer tables	20	0FBO	00	1114	356
S 1 SUBKTNES	20	1114	00	5210	18684
LAY DIRECTORY	30	5A10	00	5410	12
NG AND DATA	30	541C	00	7258	6343
S 2 SUBRTMES	JO	98F0	00	98F0	,

ON ALLOCATIUN

INDO
$205 A 1 C \quad 006030$
: 556
TEXT 10 5A58 $00 \quad 6030$
$30 \quad 6030 \quad 00 \quad 6488$
2648
TEXT 206180 OO 6488
LVEC $\quad 306588 \quad 006658 \quad 464$

APPENDIX C

Below are the x, y, and z coordinates for a series of monosubstituted acetylenes and ethylenes as well as substituted fluoro- and chloro- acetylenes and ethylenes.

1. Monosubstituted Acetylenes

Assumptions: a) $C \equiv C$ bond length is fixed at 1.2044°
b) Substitution does not change the CsC length

$$
H-C_{2} \equiv C_{1}-x
$$

	x	y	
C_{1}	0.000	0.000	0.000
C_{2}	-1.204	0.000	0.000
H	-2.26	0.000	0.000
H	1.06	0.000	0.000
$\mathrm{X}=\mathrm{F}$	1.29	0.000	0.000

$\mathrm{X}=\mathrm{Cl}$	1.632	0.000
$\mathrm{X}=\mathrm{CHO}$		
C	1.46	0.000
0	0.659	1.015
	H	.540
	-0.935	

$X=C N$

C	1.382	0.009				
N	2.539	0.00	\quad		0.000	
:---	:---	:---				
		0.000				

$\mathrm{X}=\mathrm{NO}_{2}$| N | 1.45 | | |
| ---: | ---: | ---: | ---: |
| 0 | .605 | 0.040 | 0.000 |
| 0 | .605 | -1.048 | 0.000 |
| | | 0.000 | |

2. Substituted Fluoro-Acetylenes

Assumptions: see(1)

$$
F-c_{2} \equiv c_{1}-x
$$

C_{1}	0.000	0.000	0.000
C_{2}	-1.204	0.000	0.000
F^{2}	-2.494	0.000	0.000
$X=H$	1.06	0.000	0.000
$X=F$	1.29	0.000	0.000

$X=$	Cl	1.632	0.000	0.000
$\mathrm{X}=\mathrm{CHO}$				
	C	1.46	0.000	0.000
	0	0.659	1.015	0.000
	H	0.540	-0.935	0.000
$X=C N$				
	C	1.38	0.000	0.000
	N	2.539	0.000	0.000
$\mathrm{X}=\mathrm{NO}_{2}$				
	0	0.605	1.048	0.000
	0	0.605	-1.048	0.000
3. Substituted Chloro-Acetylenes				
C		0.000	0.000	0.000
C		-1.204	0.000	0.000
Cl		-2.836	0.000	0.008
$X=$	H	1.06	0.000	0.00
$\mathrm{X}=$	F	1.29	0.000	00
$X=$	Cl	1.632	0.000	. 000
$\mathrm{X}=\mathrm{CHO}$				
	C	1.46	$0.000<$	0.000
	0	0.659	1.015	0.000
	H	0.540	-0.93	0.000
$X=C N$				
	C	1.38	000	0.000
	N	2.539	2. 000	0.000
$\mathrm{X}=\mathrm{NO}_{2}$				
	2_{N}	1.45	0.000	0.000
	0	0.605	1.048	0.000
-	0	0.605	-1.048	0.000

4. Monosubstituted Ethylenes Assumptions: a) $C=C$ bond length of 1.337 A
b) Substitution does not change molecular geometry
c) Trigonal bonds

C	0.000	0.000	0.000
C	-1.337	0.000	0.000

H_{1}	0.540	0.935	0.000
H_{2}	-1.88	0.935	0.000
H_{3}	-1.88	-0.935	0.000
$\mathrm{X}=\mathrm{H}$	0.540	-0.935	0.000
$\mathrm{X}=\mathrm{F}$	0.674	-1.28	0.000
$\mathrm{X}=\mathrm{Cl}$	0.865	-1.50	0.000

$\mathrm{X}=\mathrm{CHO}(\text { trans })^{*}$

C	0.779	-1.229	0.000
0	1.991	-1.229	0.000
H	0.199	-2.140	0.000

$X=C N$

C	0.730	-1.26	0.000
N	1.310	-2.27	0.000

$\mathrm{X}=\mathrm{NO}_{2}$| $\underset{\mathrm{N}}{(\text { planar })}$ | 0.735 | -1.27 | 0.000 |
| :---: | :---: | :---: | :---: |
| 0 | 1.34 | -2.32 | 0.000 |
| 0 | 1.945 | -1.27 | 0.000 |

$\mathrm{X}=\mathrm{NO}_{2}$ (not planar) (This was the most stable configuration and was used in the tarpas in Section IV)

N	0.735	-1.27
0	1.0375	-1.797
0	1.0375	-1.797

For $\mathrm{X}=\mathrm{CHO}$ (cis) ${ }^{* *}$ the fol ${ }^{\text {(cing }}$ geometry was assumed:

C_{1}	0.000	0.000	0.000
C_{2}	-1.16	0.669	0.000
H_{1}	-2.093	0.129	0.000
H_{2}	0.000	-1.08	0.000
H_{3}	-1.16	1.75	0.000
H_{4}	-2.16	0.239	0.000
C	1.223	0.779	0.000
0	1.223	1.991	0.000
H	2.164	0.239	0.000

5. Substituted Fluoro- Ethylenes

$$
{ }_{H} c_{c}=c_{x}^{-H}
$$

Assumptions: see (4)
(c) All substitutions are trans- unless otherwise stated

To obtain these molecules the following is substituted for
H_{2}
F
-1.88
0.935
0.000 :
-1.992
1.135
0.000

For cis CHO
$H_{1} \quad-2.093$
0.1285
0.000
was replaced by
F
-2.28
0.135
6. Substituted Chloro- Ethylenes

Assumptions: see
(4) and

To obtain these molecules the following is substituted for
$\mathrm{H}_{2} \quad-1.88$
0.000
$\mathrm{Cl} \quad-2.197$
0.835

8

For cis- CHO
$\mathrm{H}_{1} \quad-2.093$

0.000
was replaced by

Cl

22.747
0.215
0.000

${ }^{1}$ Poole, J. A. D. P. Sentry, and G. A. Segal, J. Chem. Phys.. 43. S129: (1965).

2pople, J. A.. D. L. Beveridge, and P. A. Dobosh, ibid., 47. 2026 (1967).

3see, for example, Hanna, Melvin w., Quantum Mechanics in Chemistry, W. A. Benjamin, Inc. New York (1969), pp. 11,-120.

4Pople, J. A. and D. L. Beveridge, Approximate Molecular Orbital Theory, McGraw-Hill Book Company, New York (1970), p. 13.
$5_{\text {Dewar, Michael J. S., The Molecular Orbital The pry of }}$ Organic Chemistry, McGraw-Hill Book Company, New York (1969), p. 37.
${ }^{6}$ Atkins, P. W. . Molecular Quantum Mechanics Clarendon Press, Vol. 1, Oxford (1970). pp. 214-215.

7 For a more complete discussion of the Hartree-Fock equations, the reader may consult Dewar. Michael. The Molecular Orbital Theory of Organic Chemistry, pp. 57-64 (gpa footnote 5) and Pople, J. A. and D. L. Beveridge, Approximate Molecular Orbital Theory, pp. 37-41 (see footnote 4).
8^{8} Parr, R. G., J. Chem. Phys.. 20, 239 (1952).
9Pople, J.A., J. Phys. Chem 61, 6 (1957).
${ }^{10}$ Poole and Beveridge, p. $6 Q$ (see footnote 4).
$11 \mathrm{~J} . A$. Pople and G. A. Sefal, J. Chem. Phys. 43, S136 (1965).
$12 \mathrm{~J} . A$. Pople and G. A Sega, ibid. 44. 3289 (1966)
${ }^{13}$ Slater, J. C. Phys Nev.. 36, 57 (1930)
${ }^{14}$ Santry, D. P. and F. A. Segal. J. Chem. Phys. . 47. 158 (1967)

15 A table of comparisons of calculations by the two methods may be found in Popple and Beveridge, p. 95 (see footnote 4).

16 Pople, J. A., and M. S. Gordon. J. Chem. Phys. . 42, 4643 (1968)

17Pople and Eeveridge, pp. 92,94 (see footnote 4).
18 poole, J. A., and M. S. Gordon, J. Am. Chem. Soc. 8 89, 4253 (1967).

19pople and Beveridge, pp. 98-109 (see footnote 4).
${ }^{20}$ pople, J. A.. D. I. Beveridge, and Pi. A. Dobosh, J. Am. Chem. Soc., 20, 4201 (1968).

